Mercurial > hg > Members > kono > Proof > HyperReal
comparison src/HyperReal.agda @ 4:f094694aeec5
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 02 Jul 2021 22:00:15 +0900 |
parents | 04f0b553db34 |
children | ebc18df12f5a |
comparison
equal
deleted
inserted
replaced
3:04f0b553db34 | 4:f094694aeec5 |
---|---|
6 open import Relation.Nullary using (¬_; Dec; yes; no) | 6 open import Relation.Nullary using (¬_; Dec; yes; no) |
7 open import Level renaming ( suc to succ ; zero to Zero ) | 7 open import Level renaming ( suc to succ ; zero to Zero ) |
8 open import Relation.Binary.PropositionalEquality hiding ( [_] ) | 8 open import Relation.Binary.PropositionalEquality hiding ( [_] ) |
9 open import Relation.Binary.Definitions | 9 open import Relation.Binary.Definitions |
10 open import Function.Bijection | 10 open import Function.Bijection |
11 open import Relation.Binary.Structures | |
11 open import nat | 12 open import nat |
12 open import logic | 13 open import logic |
13 | 14 |
14 HyperNat : Set | 15 HyperNat : Set |
15 HyperNat = ℕ → ℕ | 16 HyperNat = ℕ → ℕ |
102 is-n≤ : (k : ℕ ) → k > ≤-m → i k ≤ j (≤-map k) | 103 is-n≤ : (k : ℕ ) → k > ≤-m → i k ≤ j (≤-map k) |
103 | 104 |
104 postulate | 105 postulate |
105 _cmpn_ : ( i j : HyperNat ) → Dec ( i n≤ j ) | 106 _cmpn_ : ( i j : HyperNat ) → Dec ( i n≤ j ) |
106 | 107 |
108 HNTotalOrder : IsTotalPreorder HyperNat ? _n≤_ | |
109 HNTotalOrder = ? | |
110 | |
107 | 111 |
108 data HyperZ : Set where | 112 data HyperZ : Set where |
109 hz : HyperNat → HyperNat → HyperZ | 113 hz : HyperNat → HyperNat → HyperZ |
110 | 114 |
111 _z*_ : (i j : HyperZ ) → HyperZ | 115 _z*_ : (i j : HyperZ ) → HyperZ |
120 HNzero i = ( k : ℕ ) → i k ≡ 0 | 124 HNzero i = ( k : ℕ ) → i k ≡ 0 |
121 | 125 |
122 ≤→= : {i j : ℕ} → i ≤ j → j ≤ i → i ≡ j | 126 ≤→= : {i j : ℕ} → i ≤ j → j ≤ i → i ≡ j |
123 ≤→= {0} {0} z≤n z≤n = refl | 127 ≤→= {0} {0} z≤n z≤n = refl |
124 ≤→= {suc i} {suc j} (s≤s i<j) (s≤s j<i) = cong suc ( ≤→= {i} {j} i<j j<i ) | 128 ≤→= {suc i} {suc j} (s≤s i<j) (s≤s j<i) = cong suc ( ≤→= {i} {j} i<j j<i ) |
129 | |
130 | |
125 | 131 |
126 HNzero? : ( i : HyperNat ) → Dec (HNzero i) | 132 HNzero? : ( i : HyperNat ) → Dec (HNzero i) |
127 HNzero? i with i cmpn hzero | hzero cmpn i | 133 HNzero? i with i cmpn hzero | hzero cmpn i |
128 ... | no s | t = no (λ n → s {!!}) -- (k₁ : ℕ) → i k₁ ≡ 0 → i k ≤ 0 | 134 ... | no s | t = no (λ n → s {!!}) -- (k₁ : ℕ) → i k₁ ≡ 0 → i k ≤ 0 |
129 ... | s | no t = no (λ n → t {!!}) | 135 ... | s | no t = no (λ n → t {!!}) |