changeset 4:f094694aeec5

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Fri, 02 Jul 2021 22:00:15 +0900
parents 04f0b553db34
children ebc18df12f5a
files src/HyperReal.agda src/logic.agda src/nat.agda
diffstat 3 files changed, 619 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- a/src/HyperReal.agda	Fri Jul 02 17:21:27 2021 +0900
+++ b/src/HyperReal.agda	Fri Jul 02 22:00:15 2021 +0900
@@ -8,6 +8,7 @@
 open import  Relation.Binary.PropositionalEquality hiding ( [_] )
 open import Relation.Binary.Definitions
 open import Function.Bijection
+open import Relation.Binary.Structures
 open import nat
 open import logic
 
@@ -104,6 +105,9 @@
 postulate
    _cmpn_  : ( i j : HyperNat ) → Dec ( i n≤ j )
 
+HNTotalOrder : IsTotalPreorder HyperNat ? _n≤_ 
+HNTotalOrder = ?
+
 
 data HyperZ : Set where
    hz : HyperNat → HyperNat → HyperZ 
@@ -123,6 +127,8 @@
 ≤→= {0} {0} z≤n z≤n = refl
 ≤→= {suc i} {suc j} (s≤s i<j) (s≤s j<i) = cong suc ( ≤→= {i} {j} i<j j<i )
 
+
+
 HNzero? : ( i : HyperNat ) → Dec (HNzero i)
 HNzero? i with i cmpn hzero | hzero cmpn i
 ... | no s | t = no (λ n → s {!!}) --  (k₁ : ℕ) → i k₁ ≡ 0  → i k ≤ 0
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/logic.agda	Fri Jul 02 22:00:15 2021 +0900
@@ -0,0 +1,161 @@
+module logic where
+
+open import Level
+open import Relation.Nullary
+open import Relation.Binary hiding (_⇔_ )
+open import Data.Empty
+
+
+data Bool : Set where
+    true : Bool
+    false : Bool
+
+record  _∧_  {n m : Level} (A  : Set n) ( B : Set m ) : Set (n ⊔ m) where
+   constructor ⟪_,_⟫
+   field
+      proj1 : A
+      proj2 : B
+
+data  _∨_  {n m : Level} (A  : Set n) ( B : Set m ) : Set (n ⊔ m) where
+   case1 : A → A ∨ B
+   case2 : B → A ∨ B
+
+_⇔_ : {n m : Level } → ( A : Set n ) ( B : Set m )  → Set (n ⊔ m)
+_⇔_ A B =  ( A → B ) ∧ ( B → A )
+
+∧-exch : {n m : Level} {A  : Set n} { B : Set m } → A ∧ B → B ∧ A
+∧-exch p = ⟪ _∧_.proj2 p , _∧_.proj1 p ⟫
+
+∨-exch : {n m : Level} {A  : Set n} { B : Set m } → A ∨ B → B ∨ A
+∨-exch (case1 x) = case2 x
+∨-exch (case2 x) = case1 x
+
+contra-position : {n m : Level } {A : Set n} {B : Set m} → (A → B) → ¬ B → ¬ A
+contra-position {n} {m} {A} {B}  f ¬b a = ¬b ( f a )
+
+double-neg : {n  : Level } {A : Set n} → A → ¬ ¬ A
+double-neg A notnot = notnot A
+
+double-neg2 : {n  : Level } {A : Set n} → ¬ ¬ ¬ A → ¬ A
+double-neg2 notnot A = notnot ( double-neg A )
+
+de-morgan : {n  : Level } {A B : Set n} →  A ∧ B  → ¬ ( (¬ A ) ∨ (¬ B ) )
+de-morgan {n} {A} {B} and (case1 ¬A) = ⊥-elim ( ¬A ( _∧_.proj1 and ))
+de-morgan {n} {A} {B} and (case2 ¬B) = ⊥-elim ( ¬B ( _∧_.proj2 and ))
+
+dont-or : {n m : Level} {A  : Set n} { B : Set m } →  A ∨ B → ¬ A → B
+dont-or {A} {B} (case1 a) ¬A = ⊥-elim ( ¬A a )
+dont-or {A} {B} (case2 b) ¬A = b
+
+dont-orb : {n m : Level} {A  : Set n} { B : Set m } →  A ∨ B → ¬ B → A
+dont-orb {A} {B} (case2 b) ¬B = ⊥-elim ( ¬B b )
+dont-orb {A} {B} (case1 a) ¬B = a
+
+infixr  130 _∧_
+infixr  140 _∨_
+infixr  150 _⇔_
+
+_/\_ : Bool → Bool → Bool 
+true /\ true = true
+_ /\ _ = false
+
+_\/_ : Bool → Bool → Bool 
+false \/ false = false
+_ \/ _ = true
+
+not_ : Bool → Bool 
+not true = false
+not false = true 
+
+_<=>_ : Bool → Bool → Bool  
+true <=> true = true
+false <=> false = true
+_ <=> _ = false
+
+open import Relation.Binary.PropositionalEquality
+
+¬t=f : (t : Bool ) → ¬ ( not t ≡ t) 
+¬t=f true ()
+¬t=f false ()
+
+infixr  130 _\/_
+infixr  140 _/\_
+
+≡-Bool-func : {A B : Bool } → ( A ≡ true → B ≡ true ) → ( B ≡ true → A ≡ true ) → A ≡ B
+≡-Bool-func {true} {true} a→b b→a = refl
+≡-Bool-func {false} {true} a→b b→a with b→a refl
+... | ()
+≡-Bool-func {true} {false} a→b b→a with a→b refl
+... | ()
+≡-Bool-func {false} {false} a→b b→a = refl
+
+bool-≡-? : (a b : Bool) → Dec ( a ≡ b )
+bool-≡-? true true = yes refl
+bool-≡-? true false = no (λ ())
+bool-≡-? false true = no (λ ())
+bool-≡-? false false = yes refl
+
+¬-bool-t : {a : Bool} →  ¬ ( a ≡ true ) → a ≡ false
+¬-bool-t {true} ne = ⊥-elim ( ne refl )
+¬-bool-t {false} ne = refl
+
+¬-bool-f : {a : Bool} →  ¬ ( a ≡ false ) → a ≡ true
+¬-bool-f {true} ne = refl
+¬-bool-f {false} ne = ⊥-elim ( ne refl )
+
+¬-bool : {a : Bool} →  a ≡ false  → a ≡ true → ⊥
+¬-bool refl ()
+
+lemma-∧-0 : {a b : Bool} → a /\ b ≡ true → a ≡ false → ⊥
+lemma-∧-0 {true} {true} refl ()
+lemma-∧-0 {true} {false} ()
+lemma-∧-0 {false} {true} ()
+lemma-∧-0 {false} {false} ()
+
+lemma-∧-1 : {a b : Bool} → a /\ b ≡ true → b ≡ false → ⊥
+lemma-∧-1 {true} {true} refl ()
+lemma-∧-1 {true} {false} ()
+lemma-∧-1 {false} {true} ()
+lemma-∧-1 {false} {false} ()
+
+bool-and-tt : {a b : Bool} → a ≡ true → b ≡ true → ( a /\ b ) ≡ true
+bool-and-tt refl refl = refl
+
+bool-∧→tt-0 : {a b : Bool} → ( a /\ b ) ≡ true → a ≡ true 
+bool-∧→tt-0 {true} {true} refl = refl
+bool-∧→tt-0 {false} {_} ()
+
+bool-∧→tt-1 : {a b : Bool} → ( a /\ b ) ≡ true → b ≡ true 
+bool-∧→tt-1 {true} {true} refl = refl
+bool-∧→tt-1 {true} {false} ()
+bool-∧→tt-1 {false} {false} ()
+
+bool-or-1 : {a b : Bool} → a ≡ false → ( a \/ b ) ≡ b 
+bool-or-1 {false} {true} refl = refl
+bool-or-1 {false} {false} refl = refl
+bool-or-2 : {a b : Bool} → b ≡ false → (a \/ b ) ≡ a 
+bool-or-2 {true} {false} refl = refl
+bool-or-2 {false} {false} refl = refl
+
+bool-or-3 : {a : Bool} → ( a \/ true ) ≡ true 
+bool-or-3 {true} = refl
+bool-or-3 {false} = refl
+
+bool-or-31 : {a b : Bool} → b ≡ true  → ( a \/ b ) ≡ true 
+bool-or-31 {true} {true} refl = refl
+bool-or-31 {false} {true} refl = refl
+
+bool-or-4 : {a : Bool} → ( true \/ a ) ≡ true 
+bool-or-4 {true} = refl
+bool-or-4 {false} = refl
+
+bool-or-41 : {a b : Bool} → a ≡ true  → ( a \/ b ) ≡ true 
+bool-or-41 {true} {b} refl = refl
+
+bool-and-1 : {a b : Bool} →  a ≡ false → (a /\ b ) ≡ false
+bool-and-1 {false} {b} refl = refl
+bool-and-2 : {a b : Bool} →  b ≡ false → (a /\ b ) ≡ false
+bool-and-2 {true} {false} refl = refl
+bool-and-2 {false} {false} refl = refl
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/nat.agda	Fri Jul 02 22:00:15 2021 +0900
@@ -0,0 +1,452 @@
+{-# OPTIONS --allow-unsolved-metas #-}
+module nat where
+
+open import Data.Nat 
+open import Data.Nat.Properties
+open import Data.Empty
+open import Relation.Nullary
+open import  Relation.Binary.PropositionalEquality
+open import  Relation.Binary.Core
+open import  Relation.Binary.Definitions
+open import  logic
+open import Level hiding ( zero ; suc ) 
+
+nat-<> : { x y : ℕ } → x < y → y < x → ⊥
+nat-<>  (s≤s x<y) (s≤s y<x) = nat-<> x<y y<x
+
+nat-≤> : { x y : ℕ } → x ≤ y → y < x → ⊥
+nat-≤>  (s≤s x<y) (s≤s y<x) = nat-≤> x<y y<x
+
+nat-<≡ : { x : ℕ } → x < x → ⊥
+nat-<≡  (s≤s lt) = nat-<≡ lt
+
+nat-≡< : { x y : ℕ } → x ≡ y → x < y → ⊥
+nat-≡< refl lt = nat-<≡ lt
+
+¬a≤a : {la : ℕ} → suc la ≤ la → ⊥
+¬a≤a  (s≤s lt) = ¬a≤a  lt
+
+a<sa : {la : ℕ} → la < suc la 
+a<sa {zero} = s≤s z≤n
+a<sa {suc la} = s≤s a<sa 
+
+=→¬< : {x : ℕ  } → ¬ ( x < x )
+=→¬< {zero} ()
+=→¬< {suc x} (s≤s lt) = =→¬< lt
+
+>→¬< : {x y : ℕ  } → (x < y ) → ¬ ( y < x )
+>→¬< (s≤s x<y) (s≤s y<x) = >→¬< x<y y<x
+
+<-∨ : { x y : ℕ } → x < suc y → ( (x ≡ y ) ∨ (x < y) )
+<-∨ {zero} {zero} (s≤s z≤n) = case1 refl
+<-∨ {zero} {suc y} (s≤s lt) = case2 (s≤s z≤n)
+<-∨ {suc x} {zero} (s≤s ())
+<-∨ {suc x} {suc y} (s≤s lt) with <-∨ {x} {y} lt
+<-∨ {suc x} {suc y} (s≤s lt) | case1 eq = case1 (cong (λ k → suc k ) eq)
+<-∨ {suc x} {suc y} (s≤s lt) | case2 lt1 = case2 (s≤s lt1)
+
+max : (x y : ℕ) → ℕ
+max zero zero = zero
+max zero (suc x) = (suc x)
+max (suc x) zero = (suc x)
+max (suc x) (suc y) = suc ( max x y )
+
+-- _*_ : ℕ → ℕ → ℕ
+-- _*_ zero _ = zero
+-- _*_ (suc n) m = m + ( n * m )
+
+-- x ^ y
+exp : ℕ → ℕ → ℕ
+exp _ zero = 1
+exp n (suc m) = n * ( exp n m )
+
+div2 : ℕ → (ℕ ∧ Bool )
+div2 zero =  ⟪ 0 , false ⟫
+div2 (suc zero) =  ⟪ 0 , true ⟫
+div2 (suc (suc n)) =  ⟪ suc (proj1 (div2 n)) , proj2 (div2 n) ⟫ where
+    open _∧_
+
+div2-rev : (ℕ ∧ Bool ) → ℕ
+div2-rev ⟪ x , true ⟫ = suc (x + x)
+div2-rev ⟪ x , false ⟫ = x + x
+
+div2-eq : (x : ℕ ) → div2-rev ( div2 x ) ≡ x
+div2-eq zero = refl
+div2-eq (suc zero) = refl
+div2-eq (suc (suc x)) with div2 x | inspect div2 x 
+... | ⟪ x1 , true ⟫ | record { eq = eq1 } = begin -- eq1 : div2 x ≡ ⟪ x1 , true ⟫
+     div2-rev ⟪ suc x1 , true ⟫ ≡⟨⟩
+     suc (suc (x1 + suc x1)) ≡⟨ cong (λ k → suc (suc k )) (+-comm x1  _ ) ⟩
+     suc (suc (suc (x1 + x1))) ≡⟨⟩    
+     suc (suc (div2-rev ⟪ x1 , true ⟫)) ≡⟨ cong (λ k → suc (suc (div2-rev k ))) (sym eq1) ⟩ 
+     suc (suc (div2-rev (div2 x)))      ≡⟨ cong (λ k → suc (suc k)) (div2-eq x) ⟩ 
+     suc (suc x) ∎  where open ≡-Reasoning
+... | ⟪ x1 , false ⟫ | record { eq = eq1 } = begin
+     div2-rev ⟪ suc x1 , false ⟫ ≡⟨⟩
+     suc (x1 + suc x1) ≡⟨ cong (λ k → (suc k )) (+-comm x1  _ ) ⟩
+     suc (suc (x1 + x1)) ≡⟨⟩    
+     suc (suc (div2-rev ⟪ x1 , false ⟫)) ≡⟨ cong (λ k → suc (suc (div2-rev k ))) (sym eq1) ⟩ 
+     suc (suc (div2-rev (div2 x)))      ≡⟨ cong (λ k → suc (suc k)) (div2-eq x) ⟩ 
+     suc (suc x) ∎  where open ≡-Reasoning
+
+minus : (a b : ℕ ) →  ℕ
+minus a zero = a
+minus zero (suc b) = zero
+minus (suc a) (suc b) = minus a b
+
+_-_ = minus
+
+m+= : {i j  m : ℕ } → m + i ≡ m + j → i ≡ j
+m+= {i} {j} {zero} refl = refl
+m+= {i} {j} {suc m} eq = m+= {i} {j} {m} ( cong (λ k → pred k ) eq )
+
++m= : {i j  m : ℕ } → i + m ≡ j + m → i ≡ j
++m= {i} {j} {m} eq = m+= ( subst₂ (λ j k → j ≡ k ) (+-comm i _ ) (+-comm j _ ) eq )
+
+less-1 :  { n m : ℕ } → suc n < m → n < m
+less-1 {zero} {suc (suc _)} (s≤s (s≤s z≤n)) = s≤s z≤n
+less-1 {suc n} {suc m} (s≤s lt) = s≤s (less-1 {n} {m} lt)
+
+sa=b→a<b :  { n m : ℕ } → suc n ≡ m → n < m
+sa=b→a<b {0} {suc zero} refl = s≤s z≤n
+sa=b→a<b {suc n} {suc (suc n)} refl = s≤s (sa=b→a<b refl)
+
+minus+n : {x y : ℕ } → suc x > y  → minus x y + y ≡ x
+minus+n {x} {zero} _ = trans (sym (+-comm zero  _ )) refl
+minus+n {zero} {suc y} (s≤s ())
+minus+n {suc x} {suc y} (s≤s lt) = begin
+           minus (suc x) (suc y) + suc y
+        ≡⟨ +-comm _ (suc y)    ⟩
+           suc y + minus x y 
+        ≡⟨ cong ( λ k → suc k ) (
+           begin
+                 y + minus x y 
+              ≡⟨ +-comm y  _ ⟩
+                 minus x y + y
+              ≡⟨ minus+n {x} {y} lt ⟩
+                 x 
+           ∎  
+           ) ⟩
+           suc x
+        ∎  where open ≡-Reasoning
+
+0<s : {x : ℕ } → zero < suc x
+0<s {_} = s≤s z≤n 
+
+<-minus-0 : {x y z : ℕ } → z + x < z + y → x < y
+<-minus-0 {x} {suc _} {zero} lt = lt
+<-minus-0 {x} {y} {suc z} (s≤s lt) = <-minus-0 {x} {y} {z} lt
+
+<-minus : {x y z : ℕ } → x + z < y + z → x < y
+<-minus {x} {y} {z} lt = <-minus-0 ( subst₂ ( λ j k → j < k ) (+-comm x _) (+-comm y _ ) lt )
+
+x≤x+y : {z y : ℕ } → z ≤ z + y
+x≤x+y {zero} {y} = z≤n
+x≤x+y {suc z} {y} = s≤s  (x≤x+y {z} {y})
+
+x≤y+x : {z y : ℕ } → z ≤ y + z
+x≤y+x {z} {y} = subst (λ k → z ≤ k ) (+-comm _ y ) x≤x+y
+
+<-plus : {x y z : ℕ } → x < y → x + z < y + z 
+<-plus {zero} {suc y} {z} (s≤s z≤n) = s≤s (subst (λ k → z ≤ k ) (+-comm z _ ) x≤x+y  )
+<-plus {suc x} {suc y} {z} (s≤s lt) = s≤s (<-plus {x} {y} {z} lt)
+
+<-plus-0 : {x y z : ℕ } → x < y → z + x < z + y 
+<-plus-0 {x} {y} {z} lt = subst₂ (λ j k → j < k ) (+-comm _ z) (+-comm _ z) ( <-plus {x} {y} {z} lt )
+
+≤-plus : {x y z : ℕ } → x ≤ y → x + z ≤ y + z
+≤-plus {0} {y} {zero} z≤n = z≤n
+≤-plus {0} {y} {suc z} z≤n = subst (λ k → z < k ) (+-comm _ y ) x≤x+y 
+≤-plus {suc x} {suc y} {z} (s≤s lt) = s≤s ( ≤-plus {x} {y} {z} lt )
+
+≤-plus-0 : {x y z : ℕ } → x ≤ y → z + x ≤ z + y 
+≤-plus-0 {x} {y} {zero} lt = lt
+≤-plus-0 {x} {y} {suc z} lt = s≤s ( ≤-plus-0 {x} {y} {z} lt )
+
+x+y<z→x<z : {x y z : ℕ } → x + y < z → x < z 
+x+y<z→x<z {zero} {y} {suc z} (s≤s lt1) = s≤s z≤n
+x+y<z→x<z {suc x} {y} {suc z} (s≤s lt1) = s≤s ( x+y<z→x<z {x} {y} {z} lt1 )
+
+*≤ : {x y z : ℕ } → x ≤ y → x * z ≤ y * z 
+*≤ lt = *-mono-≤ lt ≤-refl
+
+*< : {x y z : ℕ } → x < y → x * suc z < y * suc z 
+*< {zero} {suc y} lt = s≤s z≤n
+*< {suc x} {suc y} (s≤s lt) = <-plus-0 (*< lt)
+
+<to<s : {x y  : ℕ } → x < y → x < suc y
+<to<s {zero} {suc y} (s≤s lt) = s≤s z≤n
+<to<s {suc x} {suc y} (s≤s lt) = s≤s (<to<s {x} {y} lt)
+
+<tos<s : {x y  : ℕ } → x < y → suc x < suc y
+<tos<s {zero} {suc y} (s≤s z≤n) = s≤s (s≤s z≤n)
+<tos<s {suc x} {suc y} (s≤s lt) = s≤s (<tos<s {x} {y} lt)
+
+<to≤ : {x y  : ℕ } → x < y → x ≤ y 
+<to≤ {zero} {suc y} (s≤s z≤n) = z≤n
+<to≤ {suc x} {suc y} (s≤s lt) = s≤s (<to≤ {x} {y}  lt)
+
+refl-≤s : {x : ℕ } → x ≤ suc x
+refl-≤s {zero} = z≤n
+refl-≤s {suc x} = s≤s (refl-≤s {x})
+
+refl-≤ : {x : ℕ } → x ≤ x
+refl-≤ {zero} = z≤n
+refl-≤ {suc x} = s≤s (refl-≤ {x})
+
+x<y→≤ : {x y : ℕ } → x < y →  x ≤ suc y
+x<y→≤ {zero} {.(suc _)} (s≤s z≤n) = z≤n
+x<y→≤ {suc x} {suc y} (s≤s lt) = s≤s (x<y→≤ {x} {y} lt)
+
+open import Data.Product
+
+i-j=0→i=j : {i j  : ℕ } → j ≤ i  → i - j ≡ 0 → i ≡ j
+i-j=0→i=j {zero} {zero} _ refl = refl
+i-j=0→i=j {zero} {suc j} () refl
+i-j=0→i=j {suc i} {zero} z≤n ()
+i-j=0→i=j {suc i} {suc j} (s≤s lt) eq = cong suc (i-j=0→i=j {i} {j} lt eq)
+
+minus+1 : {x y  : ℕ } → y ≤ x  → suc (minus x y)  ≡ minus (suc x) y 
+minus+1 {zero} {zero} y≤x = refl
+minus+1 {suc x} {zero} y≤x = refl
+minus+1 {suc x} {suc y} (s≤s y≤x) = minus+1 {x} {y} y≤x 
+
+minus+yz : {x y z : ℕ } → z ≤ y  → x + minus y z  ≡ minus (x + y) z
+minus+yz {zero} {y} {z} _ = refl
+minus+yz {suc x} {y} {z} z≤y = begin
+         suc x + minus y z ≡⟨ cong suc ( minus+yz z≤y ) ⟩
+         suc (minus (x + y) z) ≡⟨ minus+1 {x + y} {z} (≤-trans z≤y (subst (λ g → y ≤ g) (+-comm y x) x≤x+y) ) ⟩
+         minus (suc x + y) z ∎  where open ≡-Reasoning
+
+minus<=0 : {x y : ℕ } → x ≤ y → minus x y ≡ 0
+minus<=0 {0} {zero} z≤n = refl
+minus<=0 {0} {suc y} z≤n = refl
+minus<=0 {suc x} {suc y} (s≤s le) = minus<=0 {x} {y} le
+
+minus>0 : {x y : ℕ } → x < y → 0 < minus y x 
+minus>0 {zero} {suc _} (s≤s z≤n) = s≤s z≤n
+minus>0 {suc x} {suc y} (s≤s lt) = minus>0 {x} {y} lt
+
+minus>0→x<y : {x y : ℕ } → 0 < minus y x  → x < y
+minus>0→x<y {x} {y} lt with <-cmp x y
+... | tri< a ¬b ¬c = a
+... | tri≈ ¬a refl ¬c = ⊥-elim ( nat-≡< (sym (minus<=0 {x} ≤-refl)) lt )
+... | tri> ¬a ¬b c = ⊥-elim ( nat-≡< (sym (minus<=0 {y} (≤-trans refl-≤s c ))) lt )
+
+minus+y-y : {x y : ℕ } → (x + y) - y  ≡ x
+minus+y-y {zero} {y} = minus<=0 {zero + y} {y} ≤-refl 
+minus+y-y {suc x} {y} = begin
+         (suc x + y) - y ≡⟨ sym (minus+1 {_} {y} x≤y+x) ⟩
+         suc ((x + y) - y) ≡⟨ cong suc (minus+y-y {x} {y}) ⟩
+         suc x ∎  where open ≡-Reasoning
+
+minus+yx-yz : {x y z : ℕ } → (y + x) - (y + z)  ≡ x - z
+minus+yx-yz {x} {zero} {z} = refl
+minus+yx-yz {x} {suc y} {z} = minus+yx-yz {x} {y} {z} 
+
+minus+xy-zy : {x y z : ℕ } → (x + y) - (z + y)  ≡ x - z
+minus+xy-zy {x} {y} {z} = subst₂ (λ j k → j - k ≡ x - z  ) (+-comm y x) (+-comm y z) (minus+yx-yz {x} {y} {z})
+
+y-x<y : {x y : ℕ } → 0 < x → 0 < y  → y - x  <  y
+y-x<y {x} {y} 0<x 0<y with <-cmp x (suc y)
+... | tri< a ¬b ¬c = +-cancelʳ-< {x} (y - x) y ( begin
+         suc ((y - x) + x) ≡⟨ cong suc (minus+n {y} {x} a ) ⟩
+         suc y  ≡⟨ +-comm 1 _ ⟩
+         y + suc 0  ≤⟨ +-mono-≤ ≤-refl 0<x ⟩
+         y + x ∎ )  where open ≤-Reasoning
+... | tri≈ ¬a refl ¬c = subst ( λ k → k < y ) (sym (minus<=0 {y} {x} refl-≤s )) 0<y
+... | tri> ¬a ¬b c = subst ( λ k → k < y ) (sym (minus<=0 {y} {x} (≤-trans (≤-trans refl-≤s refl-≤s) c))) 0<y -- suc (suc y) ≤ x → y ≤ x
+
+open import Relation.Binary.Definitions
+
+distr-minus-* : {x y z : ℕ } → (minus x y) * z ≡ minus (x * z) (y * z) 
+distr-minus-* {x} {zero} {z} = refl
+distr-minus-* {x} {suc y} {z} with <-cmp x y
+distr-minus-* {x} {suc y} {z} | tri< a ¬b ¬c = begin
+          minus x (suc y) * z
+        ≡⟨ cong (λ k → k * z ) (minus<=0 {x} {suc y} (x<y→≤ a)) ⟩
+           0 * z 
+        ≡⟨ sym (minus<=0 {x * z} {z + y * z} le ) ⟩
+          minus (x * z) (z + y * z) 
+        ∎  where
+            open ≡-Reasoning
+            le : x * z ≤ z + y * z
+            le  = ≤-trans lemma (subst (λ k → y * z ≤ k ) (+-comm _ z ) (x≤x+y {y * z} {z} ) ) where
+               lemma : x * z ≤ y * z
+               lemma = *≤ {x} {y} {z} (<to≤ a)
+distr-minus-* {x} {suc y} {z} | tri≈ ¬a refl ¬c = begin
+          minus x (suc y) * z
+        ≡⟨ cong (λ k → k * z ) (minus<=0 {x} {suc y} refl-≤s ) ⟩
+           0 * z 
+        ≡⟨ sym (minus<=0 {x * z} {z + y * z} (lt {x} {z} )) ⟩
+          minus (x * z) (z + y * z) 
+        ∎  where
+            open ≡-Reasoning
+            lt : {x z : ℕ } →  x * z ≤ z + x * z
+            lt {zero} {zero} = z≤n
+            lt {suc x} {zero} = lt {x} {zero}
+            lt {x} {suc z} = ≤-trans lemma refl-≤s where
+               lemma : x * suc z ≤   z + x * suc z
+               lemma = subst (λ k → x * suc z ≤ k ) (+-comm _ z) (x≤x+y {x * suc z} {z}) 
+distr-minus-* {x} {suc y} {z} | tri> ¬a ¬b c = +m= {_} {_} {suc y * z} ( begin
+           minus x (suc y) * z + suc y * z
+        ≡⟨ sym (proj₂ *-distrib-+ z  (minus x (suc y) )  _) ⟩
+           ( minus x (suc y) + suc y ) * z
+        ≡⟨ cong (λ k → k * z) (minus+n {x} {suc y} (s≤s c))  ⟩
+           x * z 
+        ≡⟨ sym (minus+n {x * z} {suc y * z} (s≤s (lt c))) ⟩
+           minus (x * z) (suc y * z) + suc y * z
+        ∎ ) where
+            open ≡-Reasoning
+            lt : {x y z : ℕ } → suc y ≤ x → z + y * z ≤ x * z
+            lt {x} {y} {z} le = *≤ le 
+
+distr-minus-*' : {z x y : ℕ } → z * (minus x y)  ≡ minus (z * x) (z * y) 
+distr-minus-*' {z} {x} {y} = begin
+        z * (minus x y) ≡⟨ *-comm _ (x - y) ⟩
+        (minus x y) * z ≡⟨ distr-minus-* {x} {y} {z} ⟩
+        minus (x * z) (y * z) ≡⟨ cong₂ (λ j k → j - k ) (*-comm x z ) (*-comm y z) ⟩
+        minus (z * x) (z * y) ∎  where open ≡-Reasoning
+
+minus- : {x y z : ℕ } → suc x > z + y → minus (minus x y) z ≡ minus x (y + z)
+minus- {x} {y} {z} gt = +m= {_} {_} {z} ( begin
+           minus (minus x y) z + z
+        ≡⟨ minus+n {_} {z} lemma ⟩
+           minus x y
+        ≡⟨ +m= {_} {_} {y} ( begin
+              minus x y + y 
+           ≡⟨ minus+n {_} {y} lemma1 ⟩
+              x
+           ≡⟨ sym ( minus+n {_} {z + y} gt ) ⟩
+              minus x (z + y) + (z + y)
+           ≡⟨ sym ( +-assoc (minus x (z + y)) _  _ ) ⟩
+              minus x (z + y) + z + y
+           ∎ ) ⟩
+           minus x (z + y) + z
+        ≡⟨ cong (λ k → minus x k + z ) (+-comm _ y )  ⟩
+           minus x (y + z) + z
+        ∎  ) where
+             open ≡-Reasoning
+             lemma1 : suc x > y
+             lemma1 = x+y<z→x<z (subst (λ k → k < suc x ) (+-comm z _ ) gt )
+             lemma : suc (minus x y) > z
+             lemma = <-minus {_} {_} {y} ( subst ( λ x → z + y < suc x ) (sym (minus+n {x} {y}  lemma1 ))  gt )
+
+minus-* : {M k n : ℕ } → n < k  → minus k (suc n) * M ≡ minus (minus k n * M ) M
+minus-* {zero} {k} {n} lt = begin
+           minus k (suc n) * zero
+        ≡⟨ *-comm (minus k (suc n)) zero ⟩
+           zero * minus k (suc n) 
+        ≡⟨⟩
+           0 * minus k n 
+        ≡⟨ *-comm 0 (minus k n) ⟩
+           minus (minus k n * 0 ) 0
+        ∎  where
+        open ≡-Reasoning
+minus-* {suc m} {k} {n} lt with <-cmp k 1
+minus-* {suc m} {.0} {zero} lt | tri< (s≤s z≤n) ¬b ¬c = refl
+minus-* {suc m} {.0} {suc n} lt | tri< (s≤s z≤n) ¬b ¬c = refl
+minus-* {suc zero} {.1} {zero} lt | tri≈ ¬a refl ¬c = refl
+minus-* {suc (suc m)} {.1} {zero} lt | tri≈ ¬a refl ¬c = minus-* {suc m} {1} {zero} lt 
+minus-* {suc m} {.1} {suc n} (s≤s ()) | tri≈ ¬a refl ¬c
+minus-* {suc m} {k} {n} lt | tri> ¬a ¬b c = begin
+           minus k (suc n) * M
+        ≡⟨ distr-minus-* {k} {suc n} {M}  ⟩
+           minus (k * M ) ((suc n) * M)
+        ≡⟨⟩
+           minus (k * M ) (M + n * M  )
+        ≡⟨ cong (λ x → minus (k * M) x) (+-comm M _ ) ⟩
+           minus (k * M ) ((n * M) + M )
+        ≡⟨ sym ( minus- {k * M} {n * M} (lemma lt) ) ⟩
+           minus (minus (k * M ) (n * M)) M
+        ≡⟨ cong (λ x → minus x M ) ( sym ( distr-minus-* {k} {n} )) ⟩
+           minus (minus k n * M ) M
+        ∎  where
+             M = suc m
+             lemma : {n k m : ℕ } → n < k  → suc (k * suc m) > suc m + n * suc m
+             lemma {zero} {suc k} {m} (s≤s lt) = s≤s (s≤s (subst (λ x → x ≤ m + k * suc m) (+-comm 0 _ ) x≤x+y ))
+             lemma {suc n} {suc k} {m} lt = begin
+                         suc (suc m + suc n * suc m) 
+                      ≡⟨⟩
+                         suc ( suc (suc n) * suc m)
+                      ≤⟨ ≤-plus-0 {_} {_} {1} (*≤ lt ) ⟩
+                         suc (suc k * suc m)
+                      ∎   where open ≤-Reasoning
+             open ≡-Reasoning
+
+x=y+z→x-z=y : {x y z : ℕ } → x ≡ y + z → x - z ≡ y
+x=y+z→x-z=y {x} {zero} {.x} refl = minus<=0 {x} {x} refl-≤ -- x ≡ suc (y + z) → (x ≡ y + z → x - z ≡ y)   → (x - z) ≡ suc y
+x=y+z→x-z=y {suc x} {suc y} {zero} eq = begin -- suc x ≡ suc (y + zero) → (suc x - zero) ≡ suc y
+       suc x - zero ≡⟨ refl ⟩
+       suc x  ≡⟨ eq ⟩
+       suc y + zero ≡⟨ +-comm _ zero ⟩
+       suc y ∎  where open ≡-Reasoning
+x=y+z→x-z=y {suc x} {suc y} {suc z} eq = x=y+z→x-z=y {x} {suc y} {z} ( begin
+       x ≡⟨ cong pred eq ⟩
+       pred (suc y + suc z) ≡⟨ +-comm _ (suc z)  ⟩
+       suc z + y ≡⟨ cong suc ( +-comm _ y ) ⟩
+       suc y + z ∎  ) where open ≡-Reasoning
+
+m*1=m : {m : ℕ } → m * 1 ≡ m
+m*1=m {zero} = refl
+m*1=m {suc m} = cong suc m*1=m
+
+record Finduction {n m : Level} (P : Set n ) (Q : P → Set m ) (f : P → ℕ) : Set  (n Level.⊔ m) where
+  field
+    fzero   : {p : P} → f p ≡ zero → Q p
+    pnext : (p : P ) → P
+    decline : {p : P} → 0 < f p  → f (pnext p) < f p
+    ind : {p : P} → Q (pnext p) → Q p
+
+y<sx→y≤x : {x y : ℕ} → y < suc x → y ≤ x
+y<sx→y≤x (s≤s lt) = lt 
+
+fi0 : (x : ℕ) → x ≤ zero → x ≡ zero
+fi0 .0 z≤n = refl
+
+f-induction : {n m : Level} {P : Set n } → {Q : P → Set m }
+  → (f : P → ℕ) 
+  → Finduction P Q f
+  → (p : P ) → Q p
+f-induction {n} {m} {P} {Q} f I p with <-cmp 0 (f p)
+... | tri> ¬a ¬b ()
+... | tri≈ ¬a b ¬c = Finduction.fzero I (sym b) 
+... | tri< lt _ _ = f-induction0 p (f p) (<to≤ (Finduction.decline I lt)) where 
+   f-induction0 : (p : P) → (x : ℕ) → (f (Finduction.pnext I p)) ≤ x → Q p
+   f-induction0 p zero le = Finduction.ind I (Finduction.fzero I (fi0 _ le)) where
+   f-induction0 p (suc x) le with <-cmp (f (Finduction.pnext I p)) (suc x)
+   ... | tri< (s≤s a) ¬b ¬c = f-induction0 p x a 
+   ... | tri≈ ¬a b ¬c = Finduction.ind I (f-induction0 (Finduction.pnext I p) x (y<sx→y≤x f1)) where
+       f1 : f (Finduction.pnext I (Finduction.pnext I p)) < suc x
+       f1 = subst (λ k → f (Finduction.pnext I (Finduction.pnext I p)) < k ) b ( Finduction.decline I {Finduction.pnext I p}
+         (subst (λ k → 0 < k ) (sym b) (s≤s z≤n ) ))
+   ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> le c ) 
+
+
+record Ninduction {n m : Level} (P : Set n ) (Q : P → Set m ) (f : P → ℕ) : Set  (n Level.⊔ m) where
+  field
+    pnext : (p : P ) → P
+    fzero   : {p : P} → f (pnext p) ≡ zero → Q p
+    decline : {p : P} → 0 < f p  → f (pnext p) < f p
+    ind : {p : P} → Q (pnext p) → Q p
+
+s≤s→≤ : { i j : ℕ} → suc i ≤ suc j → i ≤ j
+s≤s→≤ (s≤s lt) = lt
+
+n-induction : {n m : Level} {P : Set n } → {Q : P → Set m }
+  → (f : P → ℕ) 
+  → Ninduction P Q f
+  → (p : P ) → Q p
+n-induction {n} {m} {P} {Q} f I p  = f-induction0 p (f (Ninduction.pnext I p)) ≤-refl where 
+   f-induction0 : (p : P) → (x : ℕ) → (f (Ninduction.pnext I p)) ≤ x  →  Q p
+   f-induction0 p zero lt = Ninduction.fzero I {p} (fi0 _ lt) 
+   f-induction0 p (suc x) le with <-cmp (f (Ninduction.pnext I p)) (suc x) 
+   ... | tri< (s≤s a)  ¬b ¬c = f-induction0 p x a
+   ... | tri≈ ¬a b ¬c = Ninduction.ind I (f-induction0 (Ninduction.pnext I p) x (s≤s→≤ nle) ) where
+      f>0 :  0 < f (Ninduction.pnext I p)
+      f>0 = subst (λ k → 0 < k ) (sym b) ( s≤s z≤n ) 
+      nle : suc (f (Ninduction.pnext I (Ninduction.pnext I p))) ≤ suc x
+      nle = subst (λ k → suc (f (Ninduction.pnext I (Ninduction.pnext I p))) ≤ k) b (Ninduction.decline I {Ninduction.pnext I p} f>0 ) 
+   ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> le c )  
+
+