Mercurial > hg > Members > kono > Proof > HyperReal
changeset 13:4b3dfce33fa3
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 05 Jul 2021 00:46:17 +0900 |
parents | e607f453f607 |
children | 7264f8749369 |
files | src/HyperReal.agda |
diffstat | 1 files changed, 20 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/src/HyperReal.agda Sun Jul 04 23:46:55 2021 +0900 +++ b/src/HyperReal.agda Mon Jul 05 00:46:17 2021 +0900 @@ -82,7 +82,7 @@ nn (suc i) with NN.k (nn i) | inspect NN.k (nn i) ... | zero | record { eq = eq } = record { k = suc (NN.sum (nn i)) ; j = 0 ; sum = suc (NN.sum (nn i)) ; stage = suc (NN.sum (nn i)) + (NN.stage (nn i)) ; nn = refl - ; ni = nn01 ; k1 = nn02 ; k0 = {!!} ; nn-unique = {!!} } where + ; ni = nn01 ; k1 = nn02 ; k0 = nn03 ; nn-unique = {!!} } where sum = NN.sum (nn i) stage = NN.stage (nn i) j = NN.j (nn i) @@ -98,9 +98,27 @@ sum + suc (nxn→n 0 sum) ≡⟨ sym (+-assoc sum 1 (nxn→n 0 sum)) ⟩ (sum + 1) + nxn→n 0 sum ≡⟨ cong (λ k → k + nxn→n 0 sum ) (+-comm sum 1 )⟩ suc (sum + nxn→n 0 sum) ≡⟨ cong suc (nid20 sum ) ⟩ - suc (nxn→n sum 0) ≡⟨ {!!} ⟩ + suc (nxn→n sum 0) ≡⟨ cong (λ k → suc (nxn→n k 0 )) (sym (NN.nn (nn i))) ⟩ + suc (nxn→n (NN.j (nn i) + (NN.k (nn i)) ) 0) ≡⟨ cong₂ (λ j k → suc (nxn→n (NN.j (nn i) + j) k )) eq (sym eq) ⟩ + suc (nxn→n (NN.j (nn i) + 0 ) (NN.k (nn i))) ≡⟨ cong (λ k → suc ( nxn→n k (NN.k (nn i)))) (+-comm (NN.j (nn i)) 0) ⟩ suc (nxn→n (NN.j (nn i)) (NN.k (nn i))) ≡⟨ cong suc (NN.k1 (nn i) ) ⟩ suc i ∎ where open ≡-Reasoning + nn03 : n→nxn (suc i) ≡ ⟪ 0 , suc (NN.sum (nn i)) ⟫ -- k0 : n→nxn i ≡ ⟪ NN.j (nn i) = sum , NN.k (nn i) = 0 ⟫ + nn03 with n→nxn i | inspect n→nxn i + ... | ⟪ x , zero ⟫ | record { eq = eq1 } = begin + ⟪ zero , suc x ⟫ ≡⟨ cong (λ k → ⟪ zero , suc k ⟫) (sym (cong proj1 eq1)) ⟩ + ⟪ zero , suc (proj1 (n→nxn i)) ⟫ ≡⟨ cong (λ k → ⟪ zero , suc k ⟫) (cong proj1 (NN.k0 (nn i))) ⟩ + ⟪ zero , suc (NN.j (nn i)) ⟫ ≡⟨ cong (λ k → ⟪ zero , suc k ⟫) (+-comm 0 _ ) ⟩ + ⟪ zero , suc (NN.j (nn i) + 0) ⟫ ≡⟨ cong (λ k → ⟪ zero , suc (NN.j (nn i) + k) ⟫ ) (sym eq) ⟩ + ⟪ zero , suc (NN.j (nn i) + NN.k (nn i)) ⟫ ≡⟨ cong (λ k → ⟪ zero , suc k ⟫ ) (NN.nn (nn i)) ⟩ + ⟪ 0 , suc sum ⟫ ∎ where open ≡-Reasoning + ... | ⟪ x , suc y ⟫ | record { eq = eq1 } = ⊥-elim ( nat-≡< (sym (cong proj2 (NN.k0 (nn i)))) (begin + suc (NN.k (nn i)) ≡⟨ cong suc eq ⟩ + suc 0 ≤⟨ s≤s z≤n ⟩ + suc y ≡⟨ sym (cong proj2 eq1) ⟩ + proj2 (n→nxn i) ∎ )) where open ≤-Reasoning + nn04 : {j0 k0 : ℕ} → nxn→n j0 k0 ≡ suc i → ⟪ 0 , suc (NN.sum (nn i)) ⟫ ≡ ⟪ j0 , k0 ⟫ + nn04 = ? ... | suc k | record {eq = eq} = record { k = k ; j = suc (NN.j (nn i)) ; sum = NN.sum (nn i) ; stage = NN.stage (nn i) ; nn = {!!} ; ni = {!!} ; k1 = {!!} ; k0 = {!!} ; nn-unique = {!!} }