Mercurial > hg > Members > kono > Proof > HyperReal
changeset 9:d7d7016764b5
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 03 Jul 2021 23:37:41 +0900 |
parents | e423b498f3fe |
children | a4e441b7493b |
files | src/HyperReal.agda |
diffstat | 1 files changed, 16 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/src/HyperReal.agda Sat Jul 03 21:40:29 2021 +0900 +++ b/src/HyperReal.agda Sat Jul 03 23:37:41 2021 +0900 @@ -100,11 +100,21 @@ n-id 0 = refl n-id (suc i) with proj2 (n→nxn (suc i)) | inspect proj2 (n→nxn (suc i)) -- ⟪ pred n , 1 ⟫ → ⟪ n , 0 ⟫ ... | zero | record { eq = eq } with proj1 (n→nxn (suc i)) | inspect proj1 (n→nxn (suc i)) - ... | zero | record { eq = eqx } = {!!} + ... | zero | record { eq = eqx } = {!!} where + nid14 : {i x y : ℕ} → n→nxn i ≡ ⟪ x , suc y ⟫ → suc x ≡ proj2 (n→nxn (suc (suc i))) + nid14 = {!!} + nid13 : (i : ℕ) → proj1 (n→nxn (suc i)) ≡ 0 → proj2 (n→nxn (suc i)) ≡ 0 → ⊥ + nid13 (suc i) eq eq1 with n→nxn i | inspect n→nxn i + ... | ⟪ x , suc y ⟫ | record { eq = eq2 } = nat-≡< (sym eq1) ( begin + 1 ≤⟨ s≤s z≤n ⟩ + suc x ≡⟨ nid14 {i} {x} {y} eq2 ⟩ + {!!} ≡⟨ {!!} ⟩ + _ ∎ ) where open ≤-Reasoning ... | suc x | record { eq = eqx } with proj2 (n→nxn i) | inspect proj2 (n→nxn i) -- i + (nxn→n 0 i) ≡ nxn→n i 0 ... | zero | record { eq = eqy } = begin - suc (x + suc (nxn→n x 0)) ≡⟨ {!!} ⟩ + suc (x + suc (nxn→n x 0)) ≡⟨ {!!} ⟩ + suc (pred (proj1 (n→nxn (suc i))) + suc (nxn→n (pred (proj1 (n→nxn (suc i)))) 0)) ≡⟨ {!!} ⟩ suc (nxn→n (proj1 (n→nxn i)) 0) ≡⟨ cong (λ k → suc (nxn→n (proj1 (n→nxn i)) k)) (sym eqy) ⟩ suc (nxn→n (proj1 (n→nxn i)) (proj2 (n→nxn i))) ≡⟨ cong suc (n-id i) ⟩ suc i ∎ where @@ -135,8 +145,8 @@ ... | zero | record { eq = eqy } = begin nxn→n (proj1 (n→nxn (suc i) )) (suc x) ≡⟨ {!!} ⟩ nxn→n zero (suc x) ≡⟨ {!!} ⟩ - x + suc (nxn→n 0 x) ≡⟨ {!!} ⟩ - x + suc (nxn→n 0 (pred (proj1 (n→nxn i)))) ≡⟨ {!!} ⟩ + pred (suc x) + suc (nxn→n 0 (pred (suc x))) ≡⟨ cong (λ k → pred k + suc (nxn→n 0 (pred k))) (sym eq) ⟩ + pred (proj2 (n→nxn (suc i) )) + suc (nxn→n 0 (pred (proj2 (n→nxn (suc i) )))) ≡⟨ {!!} ⟩ suc i ∎ where open ≡-Reasoning ... | suc y | record { eq = eqy } = begin @@ -163,6 +173,8 @@ g i j = suc (nxn→n i (suc j)) ≡ nxn→n (suc i) j h : (i : ℕ) → Set h i = i + (nxn→n 0 i) ≡ nxn→n i 0 + h1 : ( i : ℕ ) → Set + h1 i = (pred (proj1 (n→nxn (suc i))) + suc (nxn→n (pred (proj1 (n→nxn (suc i)))) 0)) ≡ suc (nxn→n (proj1 (n→nxn i)) 0) nn-id : (i j : ℕ) → n→nxn (nxn→n i j) ≡ ⟪ i , j ⟫ nn-id = {!!}