Mercurial > hg > Members > kono > Proof > HyperReal
changeset 5:ebc18df12f5a
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 02 Jul 2021 22:58:09 +0900 (2021-07-02) |
parents | f094694aeec5 |
children | b7c2a67befdf |
files | src/HyperReal.agda |
diffstat | 1 files changed, 36 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/src/HyperReal.agda Fri Jul 02 22:00:15 2021 +0900 +++ b/src/HyperReal.agda Fri Jul 02 22:58:09 2021 +0900 @@ -15,6 +15,14 @@ HyperNat : Set HyperNat = ℕ → ℕ +record IsoN : Set where + field + m→ m← : ℕ → ℕ + id→← : (i : ℕ) → m→ (m← i ) ≡ i + id←→ : (i : ℕ) → m← (m→ i ) ≡ i + +open IsoN + record NxN : Set where field nxn→n : ℕ ∧ ℕ → ℕ @@ -22,7 +30,6 @@ nn-id : (i j : ℕ) → n→nxn (nxn→n ⟪ i , j ⟫ ) ≡ ⟪ i , j ⟫ n-id : (i : ℕ) → nxn→n (n→nxn i ) ≡ i - open _∧_ -- t1 : nxn→n 0 1 ≡ 1 @@ -94,19 +101,31 @@ hzero : HyperNat hzero _ = 0 +record _n=_ (i j : HyperNat ) : Set where + field + =-map : IsoN + =-m : ℕ + is-n= : (k : ℕ ) → k > =-m → i k ≡ j (m→ =-map k) + -- -- record _n≤_ (i j : HyperNat ) : Set where field - ≤-map : ℕ → ℕ + ≤-map : IsoN ≤-m : ℕ - is-n≤ : (k : ℕ ) → k > ≤-m → i k ≤ j (≤-map k) + is-n≤ : (k : ℕ ) → k > ≤-m → i k ≤ j (m→ ≤-map k) postulate _cmpn_ : ( i j : HyperNat ) → Dec ( i n≤ j ) -HNTotalOrder : IsTotalPreorder HyperNat ? _n≤_ -HNTotalOrder = ? +HNTotalOrder : IsTotalPreorder _n=_ _n≤_ +HNTotalOrder = record { + isPreorder = record { + isEquivalence = {!!} + ; reflexive = {!!} + ; trans = {!!} } + ; total = {!!} + } data HyperZ : Set where @@ -123,6 +142,12 @@ HNzero : HyperNat → Set HNzero i = ( k : ℕ ) → i k ≡ 0 +_z=_ : (i j : HyperZ ) → Set +_z=_ = {!!} + +_z≤_ : (i j : HyperZ ) → Set +_z≤_ = {!!} + ≤→= : {i j : ℕ} → i ≤ j → j ≤ i → i ≡ j ≤→= {0} {0} z≤n z≤n = refl ≤→= {suc i} {suc j} (s≤s i<j) (s≤s j<i) = cong suc ( ≤→= {i} {j} i<j j<i ) @@ -175,6 +200,12 @@ HRzero : HyperR → Set HRzero (hr i j nz ) = HZzero i +_h=_ : (i j : HyperR ) → Set +_h=_ = {!!} + +_h≤_ : (i j : HyperR ) → Set +_h≤_ = {!!} + _h*_ : (i j : HyperR) → HyperR _h+_ : (i j : HyperR) → HyperR