1283
|
1 Sat May 13 10:51:35 JST 2023
|
|
2
|
|
3 use Filter (ZFP (Proj1 (ZFP PQ)) (Proj2 (ZFP PQ)) for projection of Ultra filter
|
|
4 tranfinite induciton on well-founded set
|
|
5
|
423
|
6 Sat Aug 1 13:16:53 JST 2020
|
|
7
|
|
8 P Generic Filter
|
|
9 as a ZF model
|
|
10 define Definition for L
|
|
11
|
187
|
12 Tue Jul 23 11:02:50 JST 2019
|
|
13
|
423
|
14 define cardinals ... done
|
187
|
15 prove CH in OD→ZF
|
338
|
16 define Ultra filter ... done
|
187
|
17 define L M : ZF ZFSet = M is an OD
|
|
18 define L N : ZF ZFSet = N = G M (G is a generic fitler on M )
|
|
19 prove ¬ CH on L N
|
|
20 prove no choice function on L N
|
|
21
|
148
|
22 Mon Jul 8 19:43:37 JST 2019
|
|
23
|
338
|
24 ordinal-definable.agda assumes all ZF Set are ordinals, that it too restrictive ... fixed
|
148
|
25
|
|
26 remove ord-Ord and prove with some assuption in HOD.agda
|
|
27 union, power set, replace, inifinite
|