annotate src/nat.agda @ 1332:87df366f85f3

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 13 Jun 2023 12:28:04 +0900
parents 8b909deb840e
children 31c9f7fc6466
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
1266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
1 {-# OPTIONS --allow-unsolved-metas #-}
431
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
2 module nat where
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
3
1266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
4 open import Data.Nat
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
5 open import Data.Nat.Properties
431
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
6 open import Data.Empty
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
7 open import Relation.Nullary
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
8 open import Relation.Binary.PropositionalEquality
1266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
9 open import Relation.Binary.Core
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
10 open import Relation.Binary.Definitions
431
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
11 open import logic
1266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
12 open import Level hiding ( zero ; suc )
431
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
13
1266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
14 nat-<> : { x y : ℕ } → x < y → y < x → ⊥
431
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
15 nat-<> (s≤s x<y) (s≤s y<x) = nat-<> x<y y<x
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
16
1266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
17 nat-≤> : { x y : ℕ } → x ≤ y → y < x → ⊥
446
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 431
diff changeset
18 nat-≤> (s≤s x<y) (s≤s y<x) = nat-≤> x<y y<x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 431
diff changeset
19
1266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
20 nat-<≡ : { x : ℕ } → x < x → ⊥
431
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
21 nat-<≡ (s≤s lt) = nat-<≡ lt
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
22
1266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
23 nat-≡< : { x y : ℕ } → x ≡ y → x < y → ⊥
431
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
24 nat-≡< refl lt = nat-<≡ lt
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
25
1266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
26 ¬a≤a : {la : ℕ} → suc la ≤ la → ⊥
431
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
27 ¬a≤a (s≤s lt) = ¬a≤a lt
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
28
1266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
29 a<sa : {la : ℕ} → la < suc la
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
30 a<sa {zero} = s≤s z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
31 a<sa {suc la} = s≤s a<sa
431
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
32
1266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
33 =→¬< : {x : ℕ } → ¬ ( x < x )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
34 =→¬< {zero} ()
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
35 =→¬< {suc x} (s≤s lt) = =→¬< lt
448
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 446
diff changeset
36
1266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
37 >→¬< : {x y : ℕ } → (x < y ) → ¬ ( y < x )
431
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
38 >→¬< (s≤s x<y) (s≤s y<x) = >→¬< x<y y<x
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
39
1266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
40 <-∨ : { x y : ℕ } → x < suc y → ( (x ≡ y ) ∨ (x < y) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
41 <-∨ {zero} {zero} (s≤s z≤n) = case1 refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
42 <-∨ {zero} {suc y} (s≤s lt) = case2 (s≤s z≤n)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
43 <-∨ {suc x} {zero} (s≤s ())
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
44 <-∨ {suc x} {suc y} (s≤s lt) with <-∨ {x} {y} lt
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
45 <-∨ {suc x} {suc y} (s≤s lt) | case1 eq = case1 (cong (λ k → suc k ) eq)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
46 <-∨ {suc x} {suc y} (s≤s lt) | case2 lt1 = case2 (s≤s lt1)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
47
1307
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1267
diff changeset
48 ≤-∨ : { x y : ℕ } → x ≤ y → ( (x ≡ y ) ∨ (x < y) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1267
diff changeset
49 ≤-∨ {zero} {zero} z≤n = case1 refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1267
diff changeset
50 ≤-∨ {zero} {suc y} z≤n = case2 (s≤s z≤n)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1267
diff changeset
51 ≤-∨ {suc x} {zero} ()
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1267
diff changeset
52 ≤-∨ {suc x} {suc y} (s≤s lt) with ≤-∨ {x} {y} lt
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1267
diff changeset
53 ≤-∨ {suc x} {suc y} (s≤s lt) | case1 eq = case1 (cong (λ k → suc k ) eq)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1267
diff changeset
54 ≤-∨ {suc x} {suc y} (s≤s lt) | case2 lt1 = case2 (s≤s lt1)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1267
diff changeset
55
1266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
56 max : (x y : ℕ) → ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
57 max zero zero = zero
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
58 max zero (suc x) = (suc x)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
59 max (suc x) zero = (suc x)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
60 max (suc x) (suc y) = suc ( max x y )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
61
1321
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1308
diff changeset
62 x≤max : (x y : ℕ) → x ≤ max x y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1308
diff changeset
63 x≤max zero zero = ≤-refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1308
diff changeset
64 x≤max zero (suc x) = z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1308
diff changeset
65 x≤max (suc x) zero = ≤-refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1308
diff changeset
66 x≤max (suc x) (suc y) = s≤s( x≤max x y )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1308
diff changeset
67
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1308
diff changeset
68 y≤max : (x y : ℕ) → y ≤ max x y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1308
diff changeset
69 y≤max zero zero = ≤-refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1308
diff changeset
70 y≤max zero (suc x) = ≤-refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1308
diff changeset
71 y≤max (suc x) zero = z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1308
diff changeset
72 y≤max (suc x) (suc y) = s≤s( y≤max x y )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1308
diff changeset
73
1266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
74 -- _*_ : ℕ → ℕ → ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
75 -- _*_ zero _ = zero
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
76 -- _*_ (suc n) m = m + ( n * m )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
77
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
78 -- x ^ y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
79 exp : ℕ → ℕ → ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
80 exp _ zero = 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
81 exp n (suc m) = n * ( exp n m )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
82
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
83 div2 : ℕ → (ℕ ∧ Bool )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
84 div2 zero = ⟪ 0 , false ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
85 div2 (suc zero) = ⟪ 0 , true ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
86 div2 (suc (suc n)) = ⟪ suc (proj1 (div2 n)) , proj2 (div2 n) ⟫ where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
87 open _∧_
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
88
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
89 div2-rev : (ℕ ∧ Bool ) → ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
90 div2-rev ⟪ x , true ⟫ = suc (x + x)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
91 div2-rev ⟪ x , false ⟫ = x + x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
92
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
93 div2-eq : (x : ℕ ) → div2-rev ( div2 x ) ≡ x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
94 div2-eq zero = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
95 div2-eq (suc zero) = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
96 div2-eq (suc (suc x)) with div2 x | inspect div2 x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
97 ... | ⟪ x1 , true ⟫ | record { eq = eq1 } = begin -- eq1 : div2 x ≡ ⟪ x1 , true ⟫
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
98 div2-rev ⟪ suc x1 , true ⟫ ≡⟨⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
99 suc (suc (x1 + suc x1)) ≡⟨ cong (λ k → suc (suc k )) (+-comm x1 _ ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
100 suc (suc (suc (x1 + x1))) ≡⟨⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
101 suc (suc (div2-rev ⟪ x1 , true ⟫)) ≡⟨ cong (λ k → suc (suc (div2-rev k ))) (sym eq1) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
102 suc (suc (div2-rev (div2 x))) ≡⟨ cong (λ k → suc (suc k)) (div2-eq x) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
103 suc (suc x) ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
104 ... | ⟪ x1 , false ⟫ | record { eq = eq1 } = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
105 div2-rev ⟪ suc x1 , false ⟫ ≡⟨⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
106 suc (x1 + suc x1) ≡⟨ cong (λ k → (suc k )) (+-comm x1 _ ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
107 suc (suc (x1 + x1)) ≡⟨⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
108 suc (suc (div2-rev ⟪ x1 , false ⟫)) ≡⟨ cong (λ k → suc (suc (div2-rev k ))) (sym eq1) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
109 suc (suc (div2-rev (div2 x))) ≡⟨ cong (λ k → suc (suc k)) (div2-eq x) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
110 suc (suc x) ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
111
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
112 sucprd : {i : ℕ } → 0 < i → suc (pred i) ≡ i
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
113 sucprd {suc i} 0<i = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
114
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
115 0<s : {x : ℕ } → zero < suc x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
116 0<s {_} = s≤s z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
117
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
118 px<py : {x y : ℕ } → pred x < pred y → x < y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
119 px<py {zero} {suc y} lt = 0<s
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
120 px<py {suc zero} {suc (suc y)} (s≤s lt) = s≤s 0<s
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
121 px<py {suc (suc x)} {suc (suc y)} (s≤s lt) = s≤s (px<py {suc x} {suc y} lt)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
122
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
123 minus : (a b : ℕ ) → ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
124 minus a zero = a
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
125 minus zero (suc b) = zero
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
126 minus (suc a) (suc b) = minus a b
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
127
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
128 _-_ = minus
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
129
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
130 m+= : {i j m : ℕ } → m + i ≡ m + j → i ≡ j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
131 m+= {i} {j} {zero} refl = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
132 m+= {i} {j} {suc m} eq = m+= {i} {j} {m} ( cong (λ k → pred k ) eq )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
133
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
134 +m= : {i j m : ℕ } → i + m ≡ j + m → i ≡ j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
135 +m= {i} {j} {m} eq = m+= ( subst₂ (λ j k → j ≡ k ) (+-comm i _ ) (+-comm j _ ) eq )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
136
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
137 less-1 : { n m : ℕ } → suc n < m → n < m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
138 less-1 {zero} {suc (suc _)} (s≤s (s≤s z≤n)) = s≤s z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
139 less-1 {suc n} {suc m} (s≤s lt) = s≤s (less-1 {n} {m} lt)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
140
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
141 sa=b→a<b : { n m : ℕ } → suc n ≡ m → n < m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
142 sa=b→a<b {0} {suc zero} refl = s≤s z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
143 sa=b→a<b {suc n} {suc (suc n)} refl = s≤s (sa=b→a<b refl)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
144
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
145 minus+n : {x y : ℕ } → suc x > y → minus x y + y ≡ x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
146 minus+n {x} {zero} _ = trans (sym (+-comm zero _ )) refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
147 minus+n {zero} {suc y} (s≤s ())
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
148 minus+n {suc x} {suc y} (s≤s lt) = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
149 minus (suc x) (suc y) + suc y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
150 ≡⟨ +-comm _ (suc y) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
151 suc y + minus x y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
152 ≡⟨ cong ( λ k → suc k ) (
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
153 begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
154 y + minus x y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
155 ≡⟨ +-comm y _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
156 minus x y + y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
157 ≡⟨ minus+n {x} {y} lt ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
158 x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
159
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
160 ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
161 suc x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
162 ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
163
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
164 <-minus-0 : {x y z : ℕ } → z + x < z + y → x < y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
165 <-minus-0 {x} {suc _} {zero} lt = lt
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
166 <-minus-0 {x} {y} {suc z} (s≤s lt) = <-minus-0 {x} {y} {z} lt
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
167
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
168 <-minus : {x y z : ℕ } → x + z < y + z → x < y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
169 <-minus {x} {y} {z} lt = <-minus-0 ( subst₂ ( λ j k → j < k ) (+-comm x _) (+-comm y _ ) lt )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
170
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
171 x≤x+y : {z y : ℕ } → z ≤ z + y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
172 x≤x+y {zero} {y} = z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
173 x≤x+y {suc z} {y} = s≤s (x≤x+y {z} {y})
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
174
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
175 x≤y+x : {z y : ℕ } → z ≤ y + z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
176 x≤y+x {z} {y} = subst (λ k → z ≤ k ) (+-comm _ y ) x≤x+y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
177
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
178 x≤x+sy : {x y : ℕ} → x < x + suc y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
179 x≤x+sy {x} {y} = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
180 suc x ≤⟨ x≤x+y ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
181 suc x + y ≡⟨ cong (λ k → k + y) (+-comm 1 x ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
182 (x + 1) + y ≡⟨ (+-assoc x 1 _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
183 x + suc y ∎ where open ≤-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
184
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
185 <-plus : {x y z : ℕ } → x < y → x + z < y + z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
186 <-plus {zero} {suc y} {z} (s≤s z≤n) = s≤s (subst (λ k → z ≤ k ) (+-comm z _ ) x≤x+y )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
187 <-plus {suc x} {suc y} {z} (s≤s lt) = s≤s (<-plus {x} {y} {z} lt)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
188
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
189 <-plus-0 : {x y z : ℕ } → x < y → z + x < z + y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
190 <-plus-0 {x} {y} {z} lt = subst₂ (λ j k → j < k ) (+-comm _ z) (+-comm _ z) ( <-plus {x} {y} {z} lt )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
191
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
192 ≤-plus : {x y z : ℕ } → x ≤ y → x + z ≤ y + z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
193 ≤-plus {0} {y} {zero} z≤n = z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
194 ≤-plus {0} {y} {suc z} z≤n = subst (λ k → z < k ) (+-comm _ y ) x≤x+y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
195 ≤-plus {suc x} {suc y} {z} (s≤s lt) = s≤s ( ≤-plus {x} {y} {z} lt )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
196
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
197 ≤-plus-0 : {x y z : ℕ } → x ≤ y → z + x ≤ z + y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
198 ≤-plus-0 {x} {y} {zero} lt = lt
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
199 ≤-plus-0 {x} {y} {suc z} lt = s≤s ( ≤-plus-0 {x} {y} {z} lt )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
200
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
201 x+y<z→x<z : {x y z : ℕ } → x + y < z → x < z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
202 x+y<z→x<z {zero} {y} {suc z} (s≤s lt1) = s≤s z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
203 x+y<z→x<z {suc x} {y} {suc z} (s≤s lt1) = s≤s ( x+y<z→x<z {x} {y} {z} lt1 )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
204
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
205 *≤ : {x y z : ℕ } → x ≤ y → x * z ≤ y * z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
206 *≤ lt = *-mono-≤ lt ≤-refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
207
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
208 *< : {x y z : ℕ } → x < y → x * suc z < y * suc z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
209 *< {zero} {suc y} lt = s≤s z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
210 *< {suc x} {suc y} (s≤s lt) = <-plus-0 (*< lt)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
211
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
212 <to<s : {x y : ℕ } → x < y → x < suc y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
213 <to<s {zero} {suc y} (s≤s lt) = s≤s z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
214 <to<s {suc x} {suc y} (s≤s lt) = s≤s (<to<s {x} {y} lt)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
215
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
216 <tos<s : {x y : ℕ } → x < y → suc x < suc y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
217 <tos<s {zero} {suc y} (s≤s z≤n) = s≤s (s≤s z≤n)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
218 <tos<s {suc x} {suc y} (s≤s lt) = s≤s (<tos<s {x} {y} lt)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
219
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
220 <to≤ : {x y : ℕ } → x < y → x ≤ y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
221 <to≤ {zero} {suc y} (s≤s z≤n) = z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
222 <to≤ {suc x} {suc y} (s≤s lt) = s≤s (<to≤ {x} {y} lt)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
223
1308
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1307
diff changeset
224 <∨≤ : ( x y : ℕ ) → (x < y ) ∨ (y ≤ x)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1307
diff changeset
225 <∨≤ x y with <-cmp x y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1307
diff changeset
226 ... | tri< a ¬b ¬c = case1 a
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1307
diff changeset
227 ... | tri≈ ¬a refl ¬c = case2 ≤-refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1307
diff changeset
228 ... | tri> ¬a ¬b c = case2 (<to≤ c)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1307
diff changeset
229
1266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
230 refl-≤s : {x : ℕ } → x ≤ suc x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
231 refl-≤s {zero} = z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
232 refl-≤s {suc x} = s≤s (refl-≤s {x})
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
233
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
234 refl-≤ : {x : ℕ } → x ≤ x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
235 refl-≤ {zero} = z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
236 refl-≤ {suc x} = s≤s (refl-≤ {x})
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
237
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
238 x<y→≤ : {x y : ℕ } → x < y → x ≤ suc y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
239 x<y→≤ {zero} {.(suc _)} (s≤s z≤n) = z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
240 x<y→≤ {suc x} {suc y} (s≤s lt) = s≤s (x<y→≤ {x} {y} lt)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
241
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
242 ≤→= : {i j : ℕ} → i ≤ j → j ≤ i → i ≡ j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
243 ≤→= {0} {0} z≤n z≤n = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
244 ≤→= {suc i} {suc j} (s≤s i<j) (s≤s j<i) = cong suc ( ≤→= {i} {j} i<j j<i )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
245
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
246 px≤x : {x : ℕ } → pred x ≤ x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
247 px≤x {zero} = refl-≤
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
248 px≤x {suc x} = refl-≤s
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
249
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
250 px≤py : {x y : ℕ } → x ≤ y → pred x ≤ pred y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
251 px≤py {zero} {zero} lt = refl-≤
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
252 px≤py {zero} {suc y} lt = z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
253 px≤py {suc x} {suc y} (s≤s lt) = lt
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
254
1307
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1267
diff changeset
255 sx≤y→x≤y : {x y : ℕ } → suc x ≤ y → x ≤ y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1267
diff changeset
256 sx≤y→x≤y {zero} {suc y} (s≤s le) = z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1267
diff changeset
257 sx≤y→x≤y {suc x} {suc y} (s≤s le) = s≤s (sx≤y→x≤y {x} {y} le)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1267
diff changeset
258
1325
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1321
diff changeset
259 x<sy→x≤y : {x y : ℕ } → x < suc y → x ≤ y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1321
diff changeset
260 x<sy→x≤y {zero} {suc y} (s≤s le) = z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1321
diff changeset
261 x<sy→x≤y {suc x} {suc y} (s≤s le) = s≤s (x<sy→x≤y {x} {y} le)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1321
diff changeset
262 x<sy→x≤y {zero} {zero} (s≤s z≤n) = ≤-refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1321
diff changeset
263
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1321
diff changeset
264
1266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
265 open import Data.Product
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
267 i-j=0→i=j : {i j : ℕ } → j ≤ i → i - j ≡ 0 → i ≡ j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
268 i-j=0→i=j {zero} {zero} _ refl = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
269 i-j=0→i=j {zero} {suc j} () refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
270 i-j=0→i=j {suc i} {zero} z≤n ()
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
271 i-j=0→i=j {suc i} {suc j} (s≤s lt) eq = cong suc (i-j=0→i=j {i} {j} lt eq)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
272
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
273 m*n=0⇒m=0∨n=0 : {i j : ℕ} → i * j ≡ 0 → (i ≡ 0) ∨ ( j ≡ 0 )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
274 m*n=0⇒m=0∨n=0 {zero} {j} refl = case1 refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
275 m*n=0⇒m=0∨n=0 {suc i} {zero} eq = case2 refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
276
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
277
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
278 minus+1 : {x y : ℕ } → y ≤ x → suc (minus x y) ≡ minus (suc x) y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
279 minus+1 {zero} {zero} y≤x = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
280 minus+1 {suc x} {zero} y≤x = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
281 minus+1 {suc x} {suc y} (s≤s y≤x) = minus+1 {x} {y} y≤x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
282
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
283 minus+yz : {x y z : ℕ } → z ≤ y → x + minus y z ≡ minus (x + y) z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
284 minus+yz {zero} {y} {z} _ = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
285 minus+yz {suc x} {y} {z} z≤y = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
286 suc x + minus y z ≡⟨ cong suc ( minus+yz z≤y ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
287 suc (minus (x + y) z) ≡⟨ minus+1 {x + y} {z} (≤-trans z≤y (subst (λ g → y ≤ g) (+-comm y x) x≤x+y) ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
288 minus (suc x + y) z ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
289
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
290 minus<=0 : {x y : ℕ } → x ≤ y → minus x y ≡ 0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
291 minus<=0 {0} {zero} z≤n = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
292 minus<=0 {0} {suc y} z≤n = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
293 minus<=0 {suc x} {suc y} (s≤s le) = minus<=0 {x} {y} le
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
294
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
295 minus>0 : {x y : ℕ } → x < y → 0 < minus y x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
296 minus>0 {zero} {suc _} (s≤s z≤n) = s≤s z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
297 minus>0 {suc x} {suc y} (s≤s lt) = minus>0 {x} {y} lt
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
298
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
299 minus>0→x<y : {x y : ℕ } → 0 < minus y x → x < y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
300 minus>0→x<y {x} {y} lt with <-cmp x y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
301 ... | tri< a ¬b ¬c = a
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
302 ... | tri≈ ¬a refl ¬c = ⊥-elim ( nat-≡< (sym (minus<=0 {x} ≤-refl)) lt )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
303 ... | tri> ¬a ¬b c = ⊥-elim ( nat-≡< (sym (minus<=0 {y} (≤-trans refl-≤s c ))) lt )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
304
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
305 minus+y-y : {x y : ℕ } → (x + y) - y ≡ x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
306 minus+y-y {zero} {y} = minus<=0 {zero + y} {y} ≤-refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
307 minus+y-y {suc x} {y} = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
308 (suc x + y) - y ≡⟨ sym (minus+1 {_} {y} x≤y+x) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
309 suc ((x + y) - y) ≡⟨ cong suc (minus+y-y {x} {y}) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
310 suc x ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
311
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
312 minus+yx-yz : {x y z : ℕ } → (y + x) - (y + z) ≡ x - z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
313 minus+yx-yz {x} {zero} {z} = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
314 minus+yx-yz {x} {suc y} {z} = minus+yx-yz {x} {y} {z}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
315
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
316 minus+xy-zy : {x y z : ℕ } → (x + y) - (z + y) ≡ x - z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
317 minus+xy-zy {x} {y} {z} = subst₂ (λ j k → j - k ≡ x - z ) (+-comm y x) (+-comm y z) (minus+yx-yz {x} {y} {z})
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
318
1267
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1266
diff changeset
319 +cancel<l : (x z : ℕ ) {y : ℕ} → y + x < y + z → x < z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1266
diff changeset
320 +cancel<l x z {zero} lt = lt
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1266
diff changeset
321 +cancel<l x z {suc y} (s≤s lt) = +cancel<l x z {y} lt
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1266
diff changeset
322
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1266
diff changeset
323 +cancel<r : (x z : ℕ ) {y : ℕ} → x + y < z + y → x < z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1266
diff changeset
324 +cancel<r x z {y} lt = +cancel<l x z (subst₂ (λ j k → j < k ) (+-comm x _) (+-comm z _) lt )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1266
diff changeset
325
1266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
326 y-x<y : {x y : ℕ } → 0 < x → 0 < y → y - x < y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
327 y-x<y {x} {y} 0<x 0<y with <-cmp x (suc y)
1267
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1266
diff changeset
328 ... | tri< a ¬b ¬c = +cancel<r (y - x) _ ( begin
1266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
329 suc ((y - x) + x) ≡⟨ cong suc (minus+n {y} {x} a ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
330 suc y ≡⟨ +-comm 1 _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
331 y + suc 0 ≤⟨ +-mono-≤ ≤-refl 0<x ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
332 y + x ∎ ) where open ≤-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
333 ... | tri≈ ¬a refl ¬c = subst ( λ k → k < y ) (sym (minus<=0 {y} {x} refl-≤s )) 0<y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
334 ... | tri> ¬a ¬b c = subst ( λ k → k < y ) (sym (minus<=0 {y} {x} (≤-trans (≤-trans refl-≤s refl-≤s) c))) 0<y -- suc (suc y) ≤ x → y ≤ x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
335
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
336 open import Relation.Binary.Definitions
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
337
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
338 distr-minus-* : {x y z : ℕ } → (minus x y) * z ≡ minus (x * z) (y * z)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
339 distr-minus-* {x} {zero} {z} = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
340 distr-minus-* {x} {suc y} {z} with <-cmp x y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
341 distr-minus-* {x} {suc y} {z} | tri< a ¬b ¬c = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
342 minus x (suc y) * z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
343 ≡⟨ cong (λ k → k * z ) (minus<=0 {x} {suc y} (x<y→≤ a)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
344 0 * z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
345 ≡⟨ sym (minus<=0 {x * z} {z + y * z} le ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
346 minus (x * z) (z + y * z)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
347 ∎ where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
348 open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
349 le : x * z ≤ z + y * z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
350 le = ≤-trans lemma (subst (λ k → y * z ≤ k ) (+-comm _ z ) (x≤x+y {y * z} {z} ) ) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
351 lemma : x * z ≤ y * z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
352 lemma = *≤ {x} {y} {z} (<to≤ a)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
353 distr-minus-* {x} {suc y} {z} | tri≈ ¬a refl ¬c = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
354 minus x (suc y) * z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
355 ≡⟨ cong (λ k → k * z ) (minus<=0 {x} {suc y} refl-≤s ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
356 0 * z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
357 ≡⟨ sym (minus<=0 {x * z} {z + y * z} (lt {x} {z} )) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
358 minus (x * z) (z + y * z)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
359 ∎ where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
360 open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
361 lt : {x z : ℕ } → x * z ≤ z + x * z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
362 lt {zero} {zero} = z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
363 lt {suc x} {zero} = lt {x} {zero}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
364 lt {x} {suc z} = ≤-trans lemma refl-≤s where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
365 lemma : x * suc z ≤ z + x * suc z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
366 lemma = subst (λ k → x * suc z ≤ k ) (+-comm _ z) (x≤x+y {x * suc z} {z})
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
367 distr-minus-* {x} {suc y} {z} | tri> ¬a ¬b c = +m= {_} {_} {suc y * z} ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
368 minus x (suc y) * z + suc y * z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
369 ≡⟨ sym (proj₂ *-distrib-+ z (minus x (suc y) ) _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
370 ( minus x (suc y) + suc y ) * z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
371 ≡⟨ cong (λ k → k * z) (minus+n {x} {suc y} (s≤s c)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
372 x * z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
373 ≡⟨ sym (minus+n {x * z} {suc y * z} (s≤s (lt c))) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
374 minus (x * z) (suc y * z) + suc y * z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
375 ∎ ) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
376 open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
377 lt : {x y z : ℕ } → suc y ≤ x → z + y * z ≤ x * z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
378 lt {x} {y} {z} le = *≤ le
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
379
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
380 distr-minus-*' : {z x y : ℕ } → z * (minus x y) ≡ minus (z * x) (z * y)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
381 distr-minus-*' {z} {x} {y} = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
382 z * (minus x y) ≡⟨ *-comm _ (x - y) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
383 (minus x y) * z ≡⟨ distr-minus-* {x} {y} {z} ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
384 minus (x * z) (y * z) ≡⟨ cong₂ (λ j k → j - k ) (*-comm x z ) (*-comm y z) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
385 minus (z * x) (z * y) ∎ where open ≡-Reasoning
431
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
386
1266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
387 minus- : {x y z : ℕ } → suc x > z + y → minus (minus x y) z ≡ minus x (y + z)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
388 minus- {x} {y} {z} gt = +m= {_} {_} {z} ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
389 minus (minus x y) z + z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
390 ≡⟨ minus+n {_} {z} lemma ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
391 minus x y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
392 ≡⟨ +m= {_} {_} {y} ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
393 minus x y + y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
394 ≡⟨ minus+n {_} {y} lemma1 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
395 x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
396 ≡⟨ sym ( minus+n {_} {z + y} gt ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
397 minus x (z + y) + (z + y)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
398 ≡⟨ sym ( +-assoc (minus x (z + y)) _ _ ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
399 minus x (z + y) + z + y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
400 ∎ ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
401 minus x (z + y) + z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
402 ≡⟨ cong (λ k → minus x k + z ) (+-comm _ y ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
403 minus x (y + z) + z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
404 ∎ ) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
405 open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
406 lemma1 : suc x > y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
407 lemma1 = x+y<z→x<z (subst (λ k → k < suc x ) (+-comm z _ ) gt )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
408 lemma : suc (minus x y) > z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
409 lemma = <-minus {_} {_} {y} ( subst ( λ x → z + y < suc x ) (sym (minus+n {x} {y} lemma1 )) gt )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
410
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
411 minus-* : {M k n : ℕ } → n < k → minus k (suc n) * M ≡ minus (minus k n * M ) M
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
412 minus-* {zero} {k} {n} lt = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
413 minus k (suc n) * zero
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
414 ≡⟨ *-comm (minus k (suc n)) zero ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
415 zero * minus k (suc n)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
416 ≡⟨⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
417 0 * minus k n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
418 ≡⟨ *-comm 0 (minus k n) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
419 minus (minus k n * 0 ) 0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
420 ∎ where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
421 open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
422 minus-* {suc m} {k} {n} lt with <-cmp k 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
423 minus-* {suc m} {.0} {zero} lt | tri< (s≤s z≤n) ¬b ¬c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
424 minus-* {suc m} {.0} {suc n} lt | tri< (s≤s z≤n) ¬b ¬c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
425 minus-* {suc zero} {.1} {zero} lt | tri≈ ¬a refl ¬c = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
426 minus-* {suc (suc m)} {.1} {zero} lt | tri≈ ¬a refl ¬c = minus-* {suc m} {1} {zero} lt
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
427 minus-* {suc m} {.1} {suc n} (s≤s ()) | tri≈ ¬a refl ¬c
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
428 minus-* {suc m} {k} {n} lt | tri> ¬a ¬b c = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
429 minus k (suc n) * M
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
430 ≡⟨ distr-minus-* {k} {suc n} {M} ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
431 minus (k * M ) ((suc n) * M)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
432 ≡⟨⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
433 minus (k * M ) (M + n * M )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
434 ≡⟨ cong (λ x → minus (k * M) x) (+-comm M _ ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
435 minus (k * M ) ((n * M) + M )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
436 ≡⟨ sym ( minus- {k * M} {n * M} (lemma lt) ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
437 minus (minus (k * M ) (n * M)) M
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
438 ≡⟨ cong (λ x → minus x M ) ( sym ( distr-minus-* {k} {n} )) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
439 minus (minus k n * M ) M
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
440 ∎ where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
441 M = suc m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
442 lemma : {n k m : ℕ } → n < k → suc (k * suc m) > suc m + n * suc m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
443 lemma {zero} {suc k} {m} (s≤s lt) = s≤s (s≤s (subst (λ x → x ≤ m + k * suc m) (+-comm 0 _ ) x≤x+y ))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
444 lemma {suc n} {suc k} {m} lt = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
445 suc (suc m + suc n * suc m)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
446 ≡⟨⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
447 suc ( suc (suc n) * suc m)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
448 ≤⟨ ≤-plus-0 {_} {_} {1} (*≤ lt ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
449 suc (suc k * suc m)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
450 ∎ where open ≤-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
451 open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
452
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
453 x=y+z→x-z=y : {x y z : ℕ } → x ≡ y + z → x - z ≡ y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
454 x=y+z→x-z=y {x} {zero} {.x} refl = minus<=0 {x} {x} refl-≤ -- x ≡ suc (y + z) → (x ≡ y + z → x - z ≡ y) → (x - z) ≡ suc y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
455 x=y+z→x-z=y {suc x} {suc y} {zero} eq = begin -- suc x ≡ suc (y + zero) → (suc x - zero) ≡ suc y
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
456 suc x - zero ≡⟨ refl ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
457 suc x ≡⟨ eq ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
458 suc y + zero ≡⟨ +-comm _ zero ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
459 suc y ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
460 x=y+z→x-z=y {suc x} {suc y} {suc z} eq = x=y+z→x-z=y {x} {suc y} {z} ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
461 x ≡⟨ cong pred eq ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
462 pred (suc y + suc z) ≡⟨ +-comm _ (suc z) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
463 suc z + y ≡⟨ cong suc ( +-comm _ y ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
464 suc y + z ∎ ) where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
465
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
466 m*1=m : {m : ℕ } → m * 1 ≡ m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
467 m*1=m {zero} = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
468 m*1=m {suc m} = cong suc m*1=m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
469
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
470 +-cancel-1 : (x y z : ℕ ) → x + y ≡ x + z → y ≡ z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
471 +-cancel-1 zero y z eq = eq
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
472 +-cancel-1 (suc x) y z eq = +-cancel-1 x y z (cong pred eq )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
473
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
474 +-cancel-0 : (x y z : ℕ ) → y + x ≡ z + x → y ≡ z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
475 +-cancel-0 x y z eq = +-cancel-1 x y z (trans (+-comm x y) (trans eq (sym (+-comm x z)) ))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
476
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
477 *-cancel-left : {x y z : ℕ } → x > 0 → x * y ≡ x * z → y ≡ z
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
478 *-cancel-left {suc x} {zero} {zero} lt eq = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
479 *-cancel-left {suc x} {zero} {suc z} lt eq = ⊥-elim ( nat-≡< eq (s≤s (begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
480 x * zero ≡⟨ *-comm x _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
481 zero ≤⟨ z≤n ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
482 z + x * suc z ∎ ))) where open ≤-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
483 *-cancel-left {suc x} {suc y} {zero} lt eq = ⊥-elim ( nat-≡< (sym eq) (s≤s (begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
484 x * zero ≡⟨ *-comm x _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
485 zero ≤⟨ z≤n ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
486 _ ∎ ))) where open ≤-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
487 *-cancel-left {suc x} {suc y} {suc z} lt eq with cong pred eq
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
488 ... | eq1 = cong suc (*-cancel-left {suc x} {y} {z} lt (+-cancel-0 x _ _ (begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
489 y + x * y + x ≡⟨ +-assoc y _ _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
490 y + (x * y + x) ≡⟨ cong (λ k → y + (k + x)) (*-comm x _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
491 y + (y * x + x) ≡⟨ cong (_+_ y) (+-comm _ x) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
492 y + (x + y * x ) ≡⟨ refl ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
493 y + suc y * x ≡⟨ cong (_+_ y) (*-comm (suc y) _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
494 y + x * suc y ≡⟨ eq1 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
495 z + x * suc z ≡⟨ refl ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
496 _ ≡⟨ sym ( cong (_+_ z) (*-comm (suc z) _) ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
497 _ ≡⟨ sym ( cong (_+_ z) (+-comm _ x)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
498 z + (z * x + x) ≡⟨ sym ( cong (λ k → z + (k + x)) (*-comm x _) ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
499 z + (x * z + x) ≡⟨ sym ( +-assoc z _ _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
500 z + x * z + x ∎ ))) where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
501
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
502 record Finduction {n m : Level} (P : Set n ) (Q : P → Set m ) (f : P → ℕ) : Set (n Level.⊔ m) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
503 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
504 fzero : {p : P} → f p ≡ zero → Q p
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
505 pnext : (p : P ) → P
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
506 decline : {p : P} → 0 < f p → f (pnext p) < f p
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
507 ind : {p : P} → Q (pnext p) → Q p
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
508
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
509 y<sx→y≤x : {x y : ℕ} → y < suc x → y ≤ x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
510 y<sx→y≤x (s≤s lt) = lt
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
511
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
512 fi0 : (x : ℕ) → x ≤ zero → x ≡ zero
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
513 fi0 .0 z≤n = refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
514
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
515 f-induction : {n m : Level} {P : Set n } → {Q : P → Set m }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
516 → (f : P → ℕ)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
517 → Finduction P Q f
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
518 → (p : P ) → Q p
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
519 f-induction {n} {m} {P} {Q} f I p with <-cmp 0 (f p)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
520 ... | tri> ¬a ¬b ()
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
521 ... | tri≈ ¬a b ¬c = Finduction.fzero I (sym b)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
522 ... | tri< lt _ _ = f-induction0 p (f p) (<to≤ (Finduction.decline I lt)) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
523 f-induction0 : (p : P) → (x : ℕ) → (f (Finduction.pnext I p)) ≤ x → Q p
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
524 f-induction0 p zero le = Finduction.ind I (Finduction.fzero I (fi0 _ le))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
525 f-induction0 p (suc x) le with <-cmp (f (Finduction.pnext I p)) (suc x)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
526 ... | tri< (s≤s a) ¬b ¬c = f-induction0 p x a
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
527 ... | tri≈ ¬a b ¬c = Finduction.ind I (f-induction0 (Finduction.pnext I p) x (y<sx→y≤x f1)) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
528 f1 : f (Finduction.pnext I (Finduction.pnext I p)) < suc x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
529 f1 = subst (λ k → f (Finduction.pnext I (Finduction.pnext I p)) < k ) b ( Finduction.decline I {Finduction.pnext I p}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
530 (subst (λ k → 0 < k ) (sym b) (s≤s z≤n ) ))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
531 ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> le c )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
532
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
533
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
534 record Ninduction {n m : Level} (P : Set n ) (Q : P → Set m ) (f : P → ℕ) : Set (n Level.⊔ m) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
535 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
536 pnext : (p : P ) → P
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
537 fzero : {p : P} → f (pnext p) ≡ zero → Q p
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
538 decline : {p : P} → 0 < f p → f (pnext p) < f p
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
539 ind : {p : P} → Q (pnext p) → Q p
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
540
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
541 s≤s→≤ : { i j : ℕ} → suc i ≤ suc j → i ≤ j
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
542 s≤s→≤ (s≤s lt) = lt
431
a5f8084b8368 reorganiztion for apkg
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
543
1266
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
544 n-induction : {n m : Level} {P : Set n } → {Q : P → Set m }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
545 → (f : P → ℕ)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
546 → Ninduction P Q f
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
547 → (p : P ) → Q p
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
548 n-induction {n} {m} {P} {Q} f I p = f-induction0 p (f (Ninduction.pnext I p)) ≤-refl where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
549 f-induction0 : (p : P) → (x : ℕ) → (f (Ninduction.pnext I p)) ≤ x → Q p
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
550 f-induction0 p zero lt = Ninduction.fzero I {p} (fi0 _ lt)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
551 f-induction0 p (suc x) le with <-cmp (f (Ninduction.pnext I p)) (suc x)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
552 ... | tri< (s≤s a) ¬b ¬c = f-induction0 p x a
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
553 ... | tri≈ ¬a b ¬c = Ninduction.ind I (f-induction0 (Ninduction.pnext I p) x (s≤s→≤ nle) ) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
554 f>0 : 0 < f (Ninduction.pnext I p)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
555 f>0 = subst (λ k → 0 < k ) (sym b) ( s≤s z≤n )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
556 nle : suc (f (Ninduction.pnext I (Ninduction.pnext I p))) ≤ suc x
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
557 nle = subst (λ k → suc (f (Ninduction.pnext I (Ninduction.pnext I p))) ≤ k) b (Ninduction.decline I {Ninduction.pnext I p} f>0 )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
558 ... | tri> ¬a ¬b c = ⊥-elim ( nat-≤> le c )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
559
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
560
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
561 record Factor (n m : ℕ ) : Set where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
562 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
563 factor : ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
564 remain : ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
565 is-factor : factor * n + remain ≡ m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
566
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
567 record Dividable (n m : ℕ ) : Set where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
568 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
569 factor : ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
570 is-factor : factor * n + 0 ≡ m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
571
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
572 open Factor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
573
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
574 DtoF : {n m : ℕ} → Dividable n m → Factor n m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
575 DtoF {n} {m} record { factor = f ; is-factor = fa } = record { factor = f ; remain = 0 ; is-factor = fa }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
576
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
577 FtoD : {n m : ℕ} → (fc : Factor n m) → remain fc ≡ 0 → Dividable n m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
578 FtoD {n} {m} record { factor = f ; remain = r ; is-factor = fa } refl = record { factor = f ; is-factor = fa }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
579
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
580 --divdable^2 : ( n k : ℕ ) → Dividable k ( n * n ) → Dividable k n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
581 --divdable^2 n k dn2 = {!!}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
582
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
583 decf : { n k : ℕ } → ( x : Factor k (suc n) ) → Factor k n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
584 decf {n} {k} record { factor = f ; remain = r ; is-factor = fa } =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
585 decf1 {n} {k} f r fa where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
586 decf1 : { n k : ℕ } → (f r : ℕ) → (f * k + r ≡ suc n) → Factor k n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
587 decf1 {n} {k} f (suc r) fa = -- this case must be the first
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
588 record { factor = f ; remain = r ; is-factor = ( begin -- fa : f * k + suc r ≡ suc n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
589 f * k + r ≡⟨ cong pred ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
590 suc ( f * k + r ) ≡⟨ +-comm _ r ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
591 r + suc (f * k) ≡⟨ sym (+-assoc r 1 _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
592 (r + 1) + f * k ≡⟨ cong (λ t → t + f * k ) (+-comm r 1) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
593 (suc r ) + f * k ≡⟨ +-comm (suc r) _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
594 f * k + suc r ≡⟨ fa ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
595 suc n ∎ ) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
596 n ∎ ) } where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
597 decf1 {n} {zero} (suc f) zero fa = ⊥-elim ( nat-≡< fa (
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
598 begin suc (suc f * zero + zero) ≡⟨ cong suc (+-comm _ zero) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
599 suc (f * 0) ≡⟨ cong suc (*-comm f zero) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
600 suc zero ≤⟨ s≤s z≤n ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
601 suc n ∎ )) where open ≤-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
602 decf1 {n} {suc k} (suc f) zero fa =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
603 record { factor = f ; remain = k ; is-factor = ( begin -- fa : suc (k + f * suc k + zero) ≡ suc n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
604 f * suc k + k ≡⟨ +-comm _ k ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
605 k + f * suc k ≡⟨ +-comm zero _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
606 (k + f * suc k) + zero ≡⟨ cong pred fa ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
607 n ∎ ) } where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
608
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
609 div0 : {k : ℕ} → Dividable k 0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
610 div0 {k} = record { factor = 0; is-factor = refl }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
611
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
612 div= : {k : ℕ} → Dividable k k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
613 div= {k} = record { factor = 1; is-factor = ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
614 k + 0 * k + 0 ≡⟨ trans ( +-comm _ 0) ( +-comm _ 0) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
615 k ∎ ) } where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
616
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
617 div1 : { k : ℕ } → k > 1 → ¬ Dividable k 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
618 div1 {k} k>1 record { factor = (suc f) ; is-factor = fa } = ⊥-elim ( nat-≡< (sym fa) ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
619 2 ≤⟨ k>1 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
620 k ≡⟨ +-comm 0 _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
621 k + 0 ≡⟨ refl ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
622 1 * k ≤⟨ *-mono-≤ {1} {suc f} (s≤s z≤n ) ≤-refl ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
623 suc f * k ≡⟨ +-comm 0 _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
624 suc f * k + 0 ∎ )) where open ≤-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
625
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
626 div+div : { i j k : ℕ } → Dividable k i → Dividable k j → Dividable k (i + j) ∧ Dividable k (j + i)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
627 div+div {i} {j} {k} di dj = ⟪ div+div1 , subst (λ g → Dividable k g) (+-comm i j) div+div1 ⟫ where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
628 fki = Dividable.factor di
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
629 fkj = Dividable.factor dj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
630 div+div1 : Dividable k (i + j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
631 div+div1 = record { factor = fki + fkj ; is-factor = ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
632 (fki + fkj) * k + 0 ≡⟨ +-comm _ 0 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
633 (fki + fkj) * k ≡⟨ *-distribʳ-+ k fki _ ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
634 fki * k + fkj * k ≡⟨ cong₂ ( λ i j → i + j ) (+-comm 0 (fki * k)) (+-comm 0 (fkj * k)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
635 (fki * k + 0) + (fkj * k + 0) ≡⟨ cong₂ ( λ i j → i + j ) (Dividable.is-factor di) (Dividable.is-factor dj) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
636 i + j ∎ ) } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
637 open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
638
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
639 div-div : { i j k : ℕ } → k > 1 → Dividable k i → Dividable k j → Dividable k (i - j) ∧ Dividable k (j - i)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
640 div-div {i} {j} {k} k>1 di dj = ⟪ div-div1 di dj , div-div1 dj di ⟫ where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
641 div-div1 : {i j : ℕ } → Dividable k i → Dividable k j → Dividable k (i - j)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
642 div-div1 {i} {j} di dj = record { factor = fki - fkj ; is-factor = ( begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
643 (fki - fkj) * k + 0 ≡⟨ +-comm _ 0 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
644 (fki - fkj) * k ≡⟨ distr-minus-* {fki} {fkj} ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
645 (fki * k) - (fkj * k) ≡⟨ cong₂ ( λ i j → i - j ) (+-comm 0 (fki * k)) (+-comm 0 (fkj * k)) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
646 (fki * k + 0) - (fkj * k + 0) ≡⟨ cong₂ ( λ i j → i - j ) (Dividable.is-factor di) (Dividable.is-factor dj) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
647 i - j ∎ ) } where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
648 open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
649 fki = Dividable.factor di
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
650 fkj = Dividable.factor dj
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
651
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
652 open _∧_
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
653
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
654 div+1 : { i k : ℕ } → k > 1 → Dividable k i → ¬ Dividable k (suc i)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
655 div+1 {i} {k} k>1 d d1 = div1 k>1 div+11 where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
656 div+11 : Dividable k 1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
657 div+11 = subst (λ g → Dividable k g) (minus+y-y {1} {i} ) ( proj2 (div-div k>1 d d1 ) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
658
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
659 div<k : { m k : ℕ } → k > 1 → m > 0 → m < k → ¬ Dividable k m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
660 div<k {m} {k} k>1 m>0 m<k d = ⊥-elim ( nat-≤> (div<k1 (Dividable.factor d) (Dividable.is-factor d)) m<k ) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
661 div<k1 : (f : ℕ ) → f * k + 0 ≡ m → k ≤ m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
662 div<k1 zero eq = ⊥-elim (nat-≡< eq m>0 )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
663 div<k1 (suc f) eq = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
664 k ≤⟨ x≤x+y ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
665 k + (f * k + 0) ≡⟨ sym (+-assoc k _ _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
666 k + f * k + 0 ≡⟨ eq ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
667 m ∎ where open ≤-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
668
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
669 0<factor : { m k : ℕ } → k > 0 → m > 0 → (d : Dividable k m ) → Dividable.factor d > 0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
670 0<factor {m} {k} k>0 m>0 d with Dividable.factor d | inspect Dividable.factor d
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
671 ... | zero | record { eq = eq1 } = ⊥-elim ( nat-≡< ff1 m>0 ) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
672 ff1 : 0 ≡ m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
673 ff1 = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
674 0 ≡⟨⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
675 0 * k + 0 ≡⟨ cong (λ j → j * k + 0) (sym eq1) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
676 Dividable.factor d * k + 0 ≡⟨ Dividable.is-factor d ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
677 m ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
678 ... | suc t | _ = s≤s z≤n
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
679
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
680 div→k≤m : { m k : ℕ } → k > 1 → m > 0 → Dividable k m → m ≥ k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
681 div→k≤m {m} {k} k>1 m>0 d with <-cmp m k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
682 ... | tri< a ¬b ¬c = ⊥-elim ( div<k k>1 m>0 a d )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
683 ... | tri≈ ¬a refl ¬c = ≤-refl
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
684 ... | tri> ¬a ¬b c = <to≤ c
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
685
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
686 div1*k+0=k : {k : ℕ } → 1 * k + 0 ≡ k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
687 div1*k+0=k {k} = begin
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
688 1 * k + 0 ≡⟨ cong (λ g → g + 0) (+-comm _ 0) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
689 k + 0 ≡⟨ +-comm _ 0 ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
690 k ∎ where open ≡-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
691
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
692 decD : {k m : ℕ} → k > 1 → Dec (Dividable k m )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
693 decD {k} {m} k>1 = n-induction {_} {_} {ℕ} {λ m → Dec (Dividable k m ) } F I m where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
694 F : ℕ → ℕ
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
695 F m = m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
696 F0 : ( m : ℕ ) → F (m - k) ≡ 0 → Dec (Dividable k m )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
697 F0 0 eq = yes record { factor = 0 ; is-factor = refl }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
698 F0 (suc m) eq with <-cmp k (suc m)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
699 ... | tri< a ¬b ¬c = yes record { factor = 1 ; is-factor =
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
700 subst (λ g → 1 * k + 0 ≡ g ) (sym (i-j=0→i=j (<to≤ a) eq )) div1*k+0=k } -- (suc m - k) ≡ 0 → k ≡ suc m, k ≤ suc m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
701 ... | tri≈ ¬a refl ¬c = yes record { factor = 1 ; is-factor = div1*k+0=k }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
702 ... | tri> ¬a ¬b c = no ( λ d → ⊥-elim (div<k k>1 (s≤s z≤n ) c d) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
703 decl : {m : ℕ } → 0 < m → m - k < m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
704 decl {m} 0<m = y-x<y (<-trans a<sa k>1 ) 0<m
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
705 ind : (p : ℕ ) → Dec (Dividable k (p - k) ) → Dec (Dividable k p )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
706 ind p (yes y) with <-cmp p k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
707 ... | tri≈ ¬a refl ¬c = yes (subst (λ g → Dividable k g) (minus+n ≤-refl ) (proj1 ( div+div y div= )))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
708 ... | tri> ¬a ¬b k<p = yes (subst (λ g → Dividable k g) (minus+n (<-trans k<p a<sa)) (proj1 ( div+div y div= )))
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
709 ... | tri< a ¬b ¬c with <-cmp p 0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
710 ... | tri≈ ¬a refl ¬c₁ = yes div0
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
711 ... | tri> ¬a ¬b₁ c = no (λ d → not-div p (Dividable.factor d) a c (Dividable.is-factor d) ) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
712 not-div : (p f : ℕ) → p < k → 0 < p → f * k + 0 ≡ p → ⊥
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
713 not-div (suc p) (suc f) p<k 0<p eq = nat-≡< (sym eq) ( begin -- ≤-trans p<k {!!}) -- suc p ≤ k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
714 suc (suc p) ≤⟨ p<k ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
715 k ≤⟨ x≤x+y ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
716 k + (f * k + 0) ≡⟨ sym (+-assoc k _ _) ⟩
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
717 suc f * k + 0 ∎ ) where open ≤-Reasoning
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
718 ind p (no n) = no (λ d → n (proj1 (div-div k>1 d div=)) )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
719 I : Ninduction ℕ _ F
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
720 I = record {
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
721 pnext = λ p → p - k
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
722 ; fzero = λ {m} eq → F0 m eq
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
723 ; decline = λ {m} lt → decl lt
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
724 ; ind = λ {p} prev → ind p prev
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
725 }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 448
diff changeset
726