Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1267:0d278b809c01
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 21 Mar 2023 20:28:56 +0900 |
parents | a27f28dbed87 |
children | 5bf3923b818b |
files | src/generic-filter.agda src/nat.agda |
diffstat | 2 files changed, 19 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/src/generic-filter.agda Tue Mar 21 11:19:15 2023 +0900 +++ b/src/generic-filter.agda Tue Mar 21 20:28:56 2023 +0900 @@ -374,6 +374,17 @@ TCS : (G : HOD) → Set (Level.suc n) TCS G = {x y : HOD} → G ∋ x → x ∋ y → G ∋ y +lemma233 : (P L p0 : HOD ) → (LPP : L ⊆ Power P) → (Lp0 : L ∋ p0 ) + → (C : CountableModel ) + → ctl-M C ∋ L → {x : HOD } → ( ⊆-Ideal.ideal (genf ( P-GenericFilter P L p0 LPP Lp0 C ))) ∋ x + → ctl-M C ∋ val x ( ⊆-Ideal.ideal (genf ( P-GenericFilter P L p0 LPP Lp0 C ))) +lemma233 P L p0 LPP Lp0 C ML {x} Gx = subst (λ k → odef M (& (val k _))) *iso (lm00 (& x) ? ) where + M = ctl-M C + pind : (x : Ordinal) → ((y : Ordinal) → y o< x → ? → M ∋ val (* y) (PDHOD L p0 C)) → ? → M ∋ val (* x) (PDHOD L p0 C) + pind x prev = ? + lm00 : (x : Ordinal) → PDHOD L p0 C ∋ * x → M ∋ val (* x) (PDHOD L p0 C) + lm00 x gx = TransFinite0 {λ x → PDHOD L p0 C ∋ * x → M ∋ val (* x) (PDHOD L p0 C)} pind x gx + val∋→∋p : {G : HOD} → (TCS G) → {x y : HOD} → {p : HOD} → G ∋ p → ( val x G ∋ val y G ) → x ∋ < y , p > val∋→∋p = ?
--- a/src/nat.agda Tue Mar 21 11:19:15 2023 +0900 +++ b/src/nat.agda Tue Mar 21 20:28:56 2023 +0900 @@ -280,9 +280,16 @@ minus+xy-zy : {x y z : ℕ } → (x + y) - (z + y) ≡ x - z minus+xy-zy {x} {y} {z} = subst₂ (λ j k → j - k ≡ x - z ) (+-comm y x) (+-comm y z) (minus+yx-yz {x} {y} {z}) ++cancel<l : (x z : ℕ ) {y : ℕ} → y + x < y + z → x < z ++cancel<l x z {zero} lt = lt ++cancel<l x z {suc y} (s≤s lt) = +cancel<l x z {y} lt + ++cancel<r : (x z : ℕ ) {y : ℕ} → x + y < z + y → x < z ++cancel<r x z {y} lt = +cancel<l x z (subst₂ (λ j k → j < k ) (+-comm x _) (+-comm z _) lt ) + y-x<y : {x y : ℕ } → 0 < x → 0 < y → y - x < y y-x<y {x} {y} 0<x 0<y with <-cmp x (suc y) -... | tri< a ¬b ¬c = +-cancelʳ-< (y - x) _ ( begin +... | tri< a ¬b ¬c = +cancel<r (y - x) _ ( begin suc ((y - x) + x) ≡⟨ cong suc (minus+n {y} {x} a ) ⟩ suc y ≡⟨ +-comm 1 _ ⟩ y + suc 0 ≤⟨ +-mono-≤ ≤-refl 0<x ⟩