Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1268:5bf3923b818b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 22 Mar 2023 12:48:06 +0900 |
parents | 0d278b809c01 |
children | 0a8b6bb9652c |
files | src/generic-filter.agda |
diffstat | 1 files changed, 24 insertions(+), 29 deletions(-) [+] |
line wrap: on
line diff
--- a/src/generic-filter.agda Tue Mar 21 20:28:56 2023 +0900 +++ b/src/generic-filter.agda Wed Mar 22 12:48:06 2023 +0900 @@ -275,12 +275,12 @@ p⊆r : p ⊆ r ¬compat : (s : HOD) → L ∋ s → ¬ ( (q ⊆ s) ∧ (r ⊆ s) ) -lemma232 : (P L p0 : HOD ) → (LPP : L ⊆ Power P) → (Lp0 : L ∋ p0 ) +Incompatible→¬M∋G : (P L p0 : HOD ) → (LPP : L ⊆ Power P) → (Lp0 : L ∋ p0 ) → (C : CountableModel ) → ctl-M C ∋ L → ( {p : HOD} → (Lp : L ∋ p ) → Incompatible L p Lp ) → ¬ ( ctl-M C ∋ ⊆-Ideal.ideal (genf ( P-GenericFilter P L p0 LPP Lp0 C ))) -lemma232 P L p0 LPP Lp0 C ML NC MF = ¬G∩D=0 D∩G=0 where +Incompatible→¬M∋G P L p0 LPP Lp0 C ML NC MF = ¬G∩D=0 D∩G=0 where PG = P-GenericFilter P L p0 LPP Lp0 C GF = genf PG G = ⊆-Ideal.ideal (genf PG) @@ -339,10 +339,6 @@ -- in D, we have V ≠ L -- --- --- val x G = { val y G | ∃ p → G ∋ p → x ∋ < y , p > } --- - val< : {x y p : Ordinal} → odef (* x) ( & < * y , * p > ) → y o< x val< {x} {y} {p} xyp = osucprev ( begin osuc y ≤⟨ osucc (odef< (subst (λ k → odef (* y , * y) k) &iso (v00 _ _ ) )) ⟩ @@ -364,6 +360,9 @@ z=valy : z ≡ & (val y (val< is-val)) z<x : z o< x +-- +-- val x G = { val y G | ∃ p → G ∋ p → x ∋ < y , p > } +-- val : (x : HOD) → (G : HOD) → HOD val x G = TransFinite {λ x → HOD } ind (& x) where ind : (x : Ordinal) → (valy : (y : Ordinal) → y o< x → HOD) → HOD @@ -374,28 +373,24 @@ TCS : (G : HOD) → Set (Level.suc n) TCS G = {x y : HOD} → G ∋ x → x ∋ y → G ∋ y -lemma233 : (P L p0 : HOD ) → (LPP : L ⊆ Power P) → (Lp0 : L ∋ p0 ) - → (C : CountableModel ) - → ctl-M C ∋ L → {x : HOD } → ( ⊆-Ideal.ideal (genf ( P-GenericFilter P L p0 LPP Lp0 C ))) ∋ x - → ctl-M C ∋ val x ( ⊆-Ideal.ideal (genf ( P-GenericFilter P L p0 LPP Lp0 C ))) -lemma233 P L p0 LPP Lp0 C ML {x} Gx = subst (λ k → odef M (& (val k _))) *iso (lm00 (& x) ? ) where - M = ctl-M C - pind : (x : Ordinal) → ((y : Ordinal) → y o< x → ? → M ∋ val (* y) (PDHOD L p0 C)) → ? → M ∋ val (* x) (PDHOD L p0 C) - pind x prev = ? - lm00 : (x : Ordinal) → PDHOD L p0 C ∋ * x → M ∋ val (* x) (PDHOD L p0 C) - lm00 x gx = TransFinite0 {λ x → PDHOD L p0 C ∋ * x → M ∋ val (* x) (PDHOD L p0 C)} pind x gx +GH : (P L p0 : HOD ) → (LPP : L ⊆ Power P) → (Lp0 : L ∋ p0 ) + → (C : CountableModel ) → HOD +GH P L p0 LPP Lp0 C = ⊆-Ideal.ideal (genf ( P-GenericFilter P L p0 LPP Lp0 C )) + +-- M ∋ x ∧ val x G ∋ val y G → M ∋ y -val∋→∋p : {G : HOD} → (TCS G) → {x y : HOD} → {p : HOD} → G ∋ p → ( val x G ∋ val y G ) → x ∋ < y , p > -val∋→∋p = ? +lemma233 : (P L p0 : HOD ) → (LPP : L ⊆ Power P) → (Lp0 : L ∋ p0 ) + → (C : CountableModel ) + → {x y : HOD } → ctl-M C ∋ x + → val x (GH P L p0 LPP Lp0 C) ∋ val y (GH P L p0 LPP Lp0 C) + → ctl-M C ∋ y +lemma233 P L p0 LPP Lp0 C {x} {y} Mx vx∋vy = ? where + M = ctl-M C + G = ⊆-Ideal.ideal (genf ( P-GenericFilter P L p0 LPP Lp0 C )) + pind : (x : Ordinal) → ((z : Ordinal) → + z o< x → odef M z → odef (val (* z) G) (& (val y G)) → M ∋ y) → + odef M x → odef (val (* x) G) (& (val y G)) → M ∋ y + pind x prev Mx vxvy = ? + lm00 : (x : Ordinal) → odef M x → odef (val (* x) G) (& (val y G)) → M ∋ y + lm00 x Mx vgvy = TransFinite0 {λ x → odef M x → odef (val (* x) G) (& (val y G)) → M ∋ y} pind x Mx vgvy -p∋→val∋ : {G : HOD} → (TCS G) → {x y : HOD} → {p : HOD} → G ∋ p → x ∋ < y , p > → ( val x G ∋ val y G ) -p∋→val∋ {G} TG {x} {y} {p} Gp = subst (λ k → k ∋ < y , p > → ( val k G ∋ val y G ) ) *iso ( - TransFinite0 {λ x → ( * x ) ∋ < y , p > → ( val (* x) G ∋ val y G )} ? (& x) ) where - pind : (x : Ordinal) → ((z : Ordinal) → z o< x → ( * z ) ∋ < y , p > → val (* z) G ∋ val y G) → - (* x ) ∋ < y , p > → val (* x) G ∋ val y G - pind x prev xyp = ? - -- subst (λ k → odef ( TransFinite (generic-filter.ind (* x) G) (& (* x))) (& (val y G))) ? ( - -- record { y = ? ; p = ? ; G∋p = ? ; is-val = ? ; z=valy = ? ; z<x = ? } ) - - -