Mercurial > hg > Members > kono > Proof > ZF-in-agda
comparison zf.agda @ 223:2e1f19c949dc
sepration of ordinal from OD
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 09 Aug 2019 17:57:58 +0900 |
parents | 22d435172d1a |
children | 650bdad56729 |
comparison
equal
deleted
inserted
replaced
222:59771eb07df0 | 223:2e1f19c949dc |
---|---|
50 -- This form of regurality forces choice function | 50 -- This form of regurality forces choice function |
51 -- regularity : ∀ x ( x ≠ ∅ → ∃ y ∈ x ( y ∩ x = ∅ ) ) | 51 -- regularity : ∀ x ( x ≠ ∅ → ∃ y ∈ x ( y ∩ x = ∅ ) ) |
52 -- minimul : (x : ZFSet ) → ¬ (x ≈ ∅) → ZFSet | 52 -- minimul : (x : ZFSet ) → ¬ (x ≈ ∅) → ZFSet |
53 -- regularity : ∀( x : ZFSet ) → (not : ¬ (x ≈ ∅)) → ( minimul x not ∈ x ∧ ( minimul x not ∩ x ≈ ∅ ) ) | 53 -- regularity : ∀( x : ZFSet ) → (not : ¬ (x ≈ ∅)) → ( minimul x not ∈ x ∧ ( minimul x not ∩ x ≈ ∅ ) ) |
54 -- another form of regularity | 54 -- another form of regularity |
55 ε-induction : { ψ : ZFSet → Set m} | 55 -- ε-induction : { ψ : ZFSet → Set m} |
56 → ( {x : ZFSet } → ({ y : ZFSet } → x ∋ y → ψ y ) → ψ x ) | 56 -- → ( {x : ZFSet } → ({ y : ZFSet } → x ∋ y → ψ y ) → ψ x ) |
57 → (x : ZFSet ) → ψ x | 57 -- → (x : ZFSet ) → ψ x |
58 -- infinity : ∃ A ( ∅ ∈ A ∧ ∀ x ∈ A ( x ∪ { x } ∈ A ) ) | 58 -- infinity : ∃ A ( ∅ ∈ A ∧ ∀ x ∈ A ( x ∪ { x } ∈ A ) ) |
59 infinity∅ : ∅ ∈ infinite | 59 infinity∅ : ∅ ∈ infinite |
60 infinity : ∀( x : ZFSet ) → x ∈ infinite → ( x ∪ { x }) ∈ infinite | 60 infinity : ∀( x : ZFSet ) → x ∈ infinite → ( x ∪ { x }) ∈ infinite |
61 selection : { ψ : ZFSet → Set m } → ∀ { X y : ZFSet } → ( ( y ∈ X ) ∧ ψ y ) ⇔ (y ∈ Select X ψ ) | 61 selection : { ψ : ZFSet → Set m } → ∀ { X y : ZFSet } → ( ( y ∈ X ) ∧ ψ y ) ⇔ (y ∈ Select X ψ ) |
62 -- replacement : ∀ x ∀ y ∀ z ( ( ψ ( x , y ) ∧ ψ ( x , z ) ) → y = z ) → ∀ X ∃ A ∀ y ( y ∈ A ↔ ∃ x ∈ X ψ ( x , y ) ) | 62 -- replacement : ∀ x ∀ y ∀ z ( ( ψ ( x , y ) ∧ ψ ( x , z ) ) → y = z ) → ∀ X ∃ A ∀ y ( y ∈ A ↔ ∃ x ∈ X ψ ( x , y ) ) |