Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff zf.agda @ 223:2e1f19c949dc
sepration of ordinal from OD
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 09 Aug 2019 17:57:58 +0900 |
parents | 22d435172d1a |
children | 650bdad56729 |
line wrap: on
line diff
--- a/zf.agda Fri Aug 09 16:54:30 2019 +0900 +++ b/zf.agda Fri Aug 09 17:57:58 2019 +0900 @@ -52,9 +52,9 @@ -- minimul : (x : ZFSet ) → ¬ (x ≈ ∅) → ZFSet -- regularity : ∀( x : ZFSet ) → (not : ¬ (x ≈ ∅)) → ( minimul x not ∈ x ∧ ( minimul x not ∩ x ≈ ∅ ) ) -- another form of regularity - ε-induction : { ψ : ZFSet → Set m} - → ( {x : ZFSet } → ({ y : ZFSet } → x ∋ y → ψ y ) → ψ x ) - → (x : ZFSet ) → ψ x + -- ε-induction : { ψ : ZFSet → Set m} + -- → ( {x : ZFSet } → ({ y : ZFSet } → x ∋ y → ψ y ) → ψ x ) + -- → (x : ZFSet ) → ψ x -- infinity : ∃ A ( ∅ ∈ A ∧ ∀ x ∈ A ( x ∪ { x } ∈ A ) ) infinity∅ : ∅ ∈ infinite infinity : ∀( x : ZFSet ) → x ∈ infinite → ( x ∪ { x }) ∈ infinite