Mercurial > hg > Members > kono > Proof > ZF-in-agda
comparison src/zorn.agda @ 663:5f85e71b2490
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 03 Jul 2022 17:08:55 +0900 |
parents | a45ec34b9fa7 |
children | 6a8d13b02a50 |
comparison
equal
deleted
inserted
replaced
662:a45ec34b9fa7 | 663:5f85e71b2490 |
---|---|
248 chain∋z : odef (chain u u<x) z | 248 chain∋z : odef (chain u u<x) z |
249 | 249 |
250 ∈∧P→o< : {A : HOD } {y : Ordinal} → {P : Set n} → odef A y ∧ P → y o< & A | 250 ∈∧P→o< : {A : HOD } {y : Ordinal} → {P : Set n} → odef A y ∧ P → y o< & A |
251 ∈∧P→o< {A } {y} p = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (proj1 p ))) | 251 ∈∧P→o< {A } {y} p = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (proj1 p ))) |
252 | 252 |
253 UnionCF : (A : HOD) (x : Ordinal) (chainf : (z : Ordinal ) → z o< x → HOD ) → HOD | |
254 UnionCF A x chainf = record { od = record { def = λ z → odef A z ∧ UChain x chainf z } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } | |
255 | |
253 data Chain (A : HOD ) ( f : Ordinal → Ordinal ) {y : Ordinal} (ay : odef A y) : Ordinal → HOD → Set (Level.suc n) where | 256 data Chain (A : HOD ) ( f : Ordinal → Ordinal ) {y : Ordinal} (ay : odef A y) : Ordinal → HOD → Set (Level.suc n) where |
254 ch-noax : {x : Ordinal } { chain : HOD } ( op : Oprev Ordinal osuc x ) (noax : ¬ odef A x ) (c : Chain A f ay (Oprev.oprev op) chain) → Chain A f ay x chain | 257 ch-noax : {x : Ordinal } { chain : HOD } ( op : Oprev Ordinal osuc x ) (noax : ¬ odef A x ) (c : Chain A f ay (Oprev.oprev op) chain) → Chain A f ay x chain |
255 ch-hasprev : {x : Ordinal } { chain : HOD } ( op : Oprev Ordinal osuc x ) (ax : odef A x ) | 258 ch-hasprev : {x : Ordinal } { chain : HOD } ( op : Oprev Ordinal osuc x ) (ax : odef A x ) |
256 ( c : Chain A f ay (Oprev.oprev op) chain) ( h : HasPrev A chain ax f ) → Chain A f ay x chain | 259 ( c : Chain A f ay (Oprev.oprev op) chain) ( h : HasPrev A chain ax f ) → Chain A f ay x chain |
257 ch-is-sup : {x : Ordinal } { chain : HOD } ( op : Oprev Ordinal osuc x ) ( ax : odef A x ) | 260 ch-is-sup : {x : Ordinal } { chain : HOD } ( op : Oprev Ordinal osuc x ) ( ax : odef A x ) |
258 ( c : Chain A f ay (Oprev.oprev op) chain) ( nh : ¬ HasPrev A chain ax f ) ( sup : IsSup A chain ax ) → Chain A f ay x | 261 ( c : Chain A f ay (Oprev.oprev op) chain) ( nh : ¬ HasPrev A chain ax f ) ( sup : IsSup A chain ax ) → Chain A f ay x |
259 record { od = record { def = λ z → odef A z ∧ (odef chain z ∨ (FClosure A f x z)) } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } | 262 record { od = record { def = λ z → odef A z ∧ (odef chain z ∨ (FClosure A f x z)) } ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } |
260 ch-skip : {x : Ordinal } { chain : HOD } ( op : Oprev Ordinal osuc x ) ( ax : odef A x ) | 263 ch-skip : {x : Ordinal } { chain : HOD } ( op : Oprev Ordinal osuc x ) ( ax : odef A x ) |
261 ( c : Chain A f ay (Oprev.oprev op) chain) ( nh : ¬ HasPrev A chain ax f ) ( nsup : ¬ IsSup A chain ax ) → Chain A f ay x chain | 264 ( c : Chain A f ay (Oprev.oprev op) chain) ( nh : ¬ HasPrev A chain ax f ) ( nsup : ¬ IsSup A chain ax ) → Chain A f ay x chain |
262 ch-union : {x : Ordinal } { chain : HOD } ( nop : ¬ Oprev Ordinal osuc x ) ( ax : odef A x ) | 265 ch-noax-union : {x : Ordinal } { chain : HOD } ( nop : ¬ Oprev Ordinal osuc x ) ( noax : ¬ odef A x ) |
263 → ( chainf : ( z : Ordinal ) → z o< x → HOD ) → ( lt : ( z : Ordinal ) → (z<x : z o< x ) → Chain A f ay z ( chainf z z<x )) | 266 → ( chainf : ( z : Ordinal ) → z o< x → HOD ) → ( lt : ( z : Ordinal ) → (z<x : z o< x ) → Chain A f ay z ( chainf z z<x )) |
267 → Chain A f ay x (UnionCF A x chainf ) | |
268 ch-hasprev-union : {x : Ordinal } { chain : HOD } ( nop : ¬ Oprev Ordinal osuc x ) ( ax : odef A x ) | |
269 → ( chainf : ( z : Ordinal ) → z o< x → HOD ) → ( lt : ( z : Ordinal ) → (z<x : z o< x ) → Chain A f ay z ( chainf z z<x )) | |
270 → ( h : HasPrev A (UnionCF A x chainf) ax f ) | |
271 → Chain A f ay x (UnionCF A x chainf ) | |
272 ch-is-sup-union : {x : Ordinal } { chain : HOD } ( nop : ¬ Oprev Ordinal osuc x ) ( ax : odef A x ) | |
273 → ( chainf : ( z : Ordinal ) → z o< x → HOD ) → ( lt : ( z : Ordinal ) → (z<x : z o< x ) → Chain A f ay z ( chainf z z<x )) | |
274 → ( nh : ¬ HasPrev A (UnionCF A x chainf) ax f ) ( sup : IsSup A (UnionCF A x chainf) ax ) | |
264 → Chain A f ay x | 275 → Chain A f ay x |
265 record { od = record { def = λ z → odef A z ∧ (UChain x chainf z ∨ FClosure A f y z ) } | 276 record { od = record { def = λ z → odef A z ∧ (UChain x chainf z ∨ FClosure A f y x ) } |
266 ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } | 277 ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } |
278 ch-skip-union : {x : Ordinal } { chain : HOD } ( nop : ¬ Oprev Ordinal osuc x ) ( ax : odef A x ) | |
279 → ( chainf : ( z : Ordinal ) → z o< x → HOD ) → ( lt : ( z : Ordinal ) → (z<x : z o< x ) → Chain A f ay z ( chainf z z<x )) | |
280 → (nh : ¬ HasPrev A (UnionCF A x chainf) ax f ) (nsup : ¬ IsSup A (UnionCF A x chainf) ax ) | |
281 → Chain A f ay x (UnionCF A x chainf) | |
267 | 282 |
268 ChainF : (A : HOD) → ( f : Ordinal → Ordinal ) {y : Ordinal} (ay : odef A y) → (chain : HOD ) → Chain A f ay (& A) chain → (x : Ordinal) → x o< & A → HOD | 283 ChainF : (A : HOD) → ( f : Ordinal → Ordinal ) {y : Ordinal} (ay : odef A y) → (chain : HOD ) → Chain A f ay (& A) chain → (x : Ordinal) → x o< & A → HOD |
269 ChainF A f {y} ay chain Ch x x<a = ? | 284 ChainF A f {y} ay chain Ch x x<a = {!!} |
270 | 285 |
271 record ZChain1 ( A : HOD ) ( f : Ordinal → Ordinal ) {y : Ordinal } (ay : odef A y ) ( z : Ordinal ) : Set (Level.suc n) where | 286 record ZChain1 ( A : HOD ) ( f : Ordinal → Ordinal ) {y : Ordinal } (ay : odef A y ) ( z : Ordinal ) : Set (Level.suc n) where |
272 field | 287 field |
273 chain : HOD | 288 chain : HOD |
274 chain-uniq : Chain A f ay z chain | 289 chain-uniq : Chain A f ay z chain |
275 | 290 |
276 record ZChain ( A : HOD ) ( f : Ordinal → Ordinal ) {init : Ordinal} (ay : odef A init) (zc0 : ZChain1 A f ay (& A) ) ( z : Ordinal ) : Set (Level.suc n) where | 291 record ZChain ( A : HOD ) ( f : Ordinal → Ordinal ) {init : Ordinal} (ay : odef A init) (zc0 : ZChain1 A f ay (& A) ) ( z : Ordinal ) : Set (Level.suc n) where |
277 chain : HOD | 292 chain : HOD |
278 chain = ? | 293 chain = {!!} |
279 field | 294 field |
280 chain⊆A : chain ⊆' A | 295 chain⊆A : chain ⊆' A |
281 chain∋init : odef chain init | 296 chain∋init : odef chain init |
282 initial : {y : Ordinal } → odef chain y → * init ≤ * y | 297 initial : {y : Ordinal } → odef chain y → * init ≤ * y |
283 f-next : {a : Ordinal } → odef chain a → odef chain (f a) | 298 f-next : {a : Ordinal } → odef chain a → odef chain (f a) |
438 record { y = HasPrev.y pr ; ay = HasPrev.ay pr ; x=fy = sc6 } } where | 453 record { y = HasPrev.y pr ; ay = HasPrev.ay pr ; x=fy = sc6 } } where |
439 sc6 : x ≡ f (HasPrev.y pr) | 454 sc6 : x ≡ f (HasPrev.y pr) |
440 sc6 = subst (λ k → k ≡ f (HasPrev.y pr) ) &iso ( HasPrev.x=fy pr ) | 455 sc6 = subst (λ k → k ≡ f (HasPrev.y pr) ) &iso ( HasPrev.x=fy pr ) |
441 ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain1.chain sc ) ax ) | 456 ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (ZChain1.chain sc ) ax ) |
442 ... | case1 is-sup = record { chain = schain ; chain-uniq = sc9 } where | 457 ... | case1 is-sup = record { chain = schain ; chain-uniq = sc9 } where |
443 -- A∋sc -- x is a sup of zc | |
444 sup0 : SUP A (ZChain1.chain sc ) | |
445 sup0 = record { sup = * x ; A∋maximal = ax ; x<sup = x21 } where | |
446 x21 : {y : HOD} → (ZChain1.chain sc ) ∋ y → (y ≡ * x) ∨ (y < * x) | |
447 x21 {y} zy with IsSup.x<sup is-sup zy | |
448 ... | case1 y=x = case1 (subst₂ (λ j k → j ≡ * k ) *iso &iso ( cong (*) y=x) ) | |
449 ... | case2 y<x = case2 (subst₂ (λ j k → j < * k ) *iso &iso y<x ) | |
450 sp : HOD | |
451 sp = SUP.sup sup0 | |
452 schain : HOD | 458 schain : HOD |
453 schain = record { od = record { def = λ x → odef A x ∧ ( odef (ZChain1.chain sc ) x ∨ (FClosure A f (& sp) x)) } | 459 schain = record { od = record { def = λ z → odef A z ∧ ( odef (ZChain1.chain sc ) z ∨ (FClosure A f x z)) } |
454 ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } | 460 ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } |
455 sc8 : Chain A f ay ? ? | 461 sc7 : ¬ HasPrev A (chain sc) (subst (λ k → odef A k) &iso ax) f |
456 sc8 = ch-is-sup op (subst (λ k → odef A k) &iso ax) (ZChain1.chain-uniq sc) ? ? | 462 sc7 not = ¬fy<x record { y = HasPrev.y not ; ay = HasPrev.ay not ; x=fy = subst (λ k → k ≡ _) (sym &iso) (HasPrev.x=fy not ) } |
457 sc9 : Chain A f ay x schain | 463 sc9 : Chain A f ay x schain |
458 sc9 = ? | 464 sc9 = ch-is-sup op (subst (λ k → odef A k) &iso ax) (ZChain1.chain-uniq sc) sc7 |
459 ... | case2 ¬x=sup = {!!} | 465 record { x<sup = λ {z} lt → subst (λ k → (z ≡ k ) ∨ (z << k )) &iso (IsSup.x<sup is-sup lt) } |
460 ... | no ¬ox = ? where | 466 ... | case2 ¬x=sup = record { chain = chain sc ; chain-uniq = ch-skip op (subst (λ k → odef A k) &iso ax) (ZChain1.chain-uniq sc) sc17 sc10 } where |
461 supf : (z : Ordinal) → z o< x → HOD | 467 sc17 : ¬ HasPrev A (chain sc) (subst (λ k → odef A k) &iso ax) f |
462 supf = ? | 468 sc17 not = ¬fy<x record { y = HasPrev.y not ; ay = HasPrev.ay not ; x=fy = subst (λ k → k ≡ _) (sym &iso) (HasPrev.x=fy not ) } |
463 sc5 : HOD | 469 sc10 : ¬ IsSup A (chain sc) (subst (λ k → odef A k) &iso ax) |
464 sc5 = record { od = record { def = λ z → odef A z ∧ (UChain x supf z ∨ FClosure A f y z)} ; odmax = & A ; <odmax = λ {y} sy → ∈∧P→o< sy } | 470 sc10 not = ¬x=sup ( record { x<sup = λ {z} lt → subst (λ k → (z ≡ k ) ∨ (z << k ) ) (sym &iso) ( IsSup.x<sup not lt ) } ) |
471 ... | no ¬ox = {!!} where | |
472 chainf : (z : Ordinal) → z o< x → HOD | |
473 chainf z z<x = ZChain1.chain ( prev z z<x ) | |
474 sc4 : ZChain1 A f ay x | |
475 sc4 with ODC.∋-p O A (* x) | |
476 ... | no noax = record { chain = UnionCF A x chainf ; chain-uniq = ? } -- ch-noax-union ¬ox (subst (λ k → ¬ odef A k) &iso noax) ? } | |
477 ... | yes ax with ODC.p∨¬p O ( HasPrev A (UnionCF A x chainf) ax f ) | |
478 ... | case1 pr = record { chain = UnionCF A x chainf ; chain-uniq = ? } -- ch-hasprev-union ¬ox (subst (λ k → odef A k) &iso ax) ? ? } | |
479 ... | case2 ¬fy<x with ODC.p∨¬p O (IsSup A (UnionCF A x chainf) ax ) | |
480 ... | case1 is-sup = ? | |
481 ... | case2 ¬x=sup = ? | |
465 | 482 |
466 ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → (x : Ordinal) → (zc0 : ZChain1 A f ay (& A)) | 483 ind : ( f : Ordinal → Ordinal ) → (mf : ≤-monotonic-f A f ) {y : Ordinal} (ay : odef A y) → (x : Ordinal) → (zc0 : ZChain1 A f ay (& A)) |
467 → ((z : Ordinal) → z o< x → ZChain A f ay zc0 z) → ZChain A f ay zc0 x | 484 → ((z : Ordinal) → z o< x → ZChain A f ay zc0 z) → ZChain A f ay zc0 x |
468 ind f mf {y} ay x zc0 prev with Oprev-p x | 485 ind f mf {y} ay x zc0 prev with Oprev-p x |
469 ... | yes op = zc4 where | 486 ... | yes op = zc4 where |
482 | 499 |
483 -- if previous chain satisfies maximality, we caan reuse it | 500 -- if previous chain satisfies maximality, we caan reuse it |
484 -- | 501 -- |
485 no-extenion : ( {a b : Ordinal} → odef (ZChain.chain zc) a → b o< osuc x → (ab : odef A b) → | 502 no-extenion : ( {a b : Ordinal} → odef (ZChain.chain zc) a → b o< osuc x → (ab : odef A b) → |
486 HasPrev A (ZChain.chain zc) ab f ∨ IsSup A (ZChain.chain zc) ab → | 503 HasPrev A (ZChain.chain zc) ab f ∨ IsSup A (ZChain.chain zc) ab → |
487 * a < * b → odef (ZChain.chain zc) b ) → ZChain A f ay ? x | 504 * a < * b → odef (ZChain.chain zc) b ) → ZChain A f ay {!!} x |
488 no-extenion is-max = record { chain⊆A = ? -- subst (λ k → k ⊆' A ) {!!} (ZChain.chain⊆A zc) | 505 no-extenion is-max = record { chain⊆A = {!!} -- subst (λ k → k ⊆' A ) {!!} (ZChain.chain⊆A zc) |
489 ; initial = subst (λ k → {y₁ : Ordinal} → odef k y₁ → * y ≤ * y₁ ) {!!} (ZChain.initial zc) | 506 ; initial = subst (λ k → {y₁ : Ordinal} → odef k y₁ → * y ≤ * y₁ ) {!!} (ZChain.initial zc) |
490 ; f-next = subst (λ k → {a : Ordinal} → odef k a → odef k (f a) ) {!!} (ZChain.f-next zc) | 507 ; f-next = subst (λ k → {a : Ordinal} → odef k a → odef k (f a) ) {!!} (ZChain.f-next zc) |
491 ; f-total = ? | 508 ; f-total = {!!} |
492 ; chain∋init = subst (λ k → odef k y ) {!!} (ZChain.chain∋init zc) | 509 ; chain∋init = subst (λ k → odef k y ) {!!} (ZChain.chain∋init zc) |
493 ; is-max = subst (λ k → {a b : Ordinal} → odef k a → b o< osuc x → (ab : odef A b) → | 510 ; is-max = subst (λ k → {a b : Ordinal} → odef k a → b o< osuc x → (ab : odef A b) → |
494 HasPrev A k ab f ∨ IsSup A k ab → * a < * b → odef k b ) {!!} is-max } where | 511 HasPrev A k ab f ∨ IsSup A k ab → * a < * b → odef k b ) {!!} is-max } where |
495 supf0 : Ordinal → HOD | 512 supf0 : Ordinal → HOD |
496 supf0 z with trio< z x | 513 supf0 z with trio< z x |
635 ... | case2 lt = ZChain.is-max zc za (zc-b<x b lt) ab p a<b | 652 ... | case2 lt = ZChain.is-max zc za (zc-b<x b lt) ab p a<b |
636 ... | case1 b=x with p | 653 ... | case1 b=x with p |
637 ... | case1 pr = ⊥-elim ( ¬fy<x record {y = HasPrev.y pr ; ay = HasPrev.ay pr ; x=fy = trans (trans &iso (sym b=x) ) (HasPrev.x=fy pr ) } ) | 654 ... | case1 pr = ⊥-elim ( ¬fy<x record {y = HasPrev.y pr ; ay = HasPrev.ay pr ; x=fy = trans (trans &iso (sym b=x) ) (HasPrev.x=fy pr ) } ) |
638 ... | case2 b=sup = ⊥-elim ( ¬x=sup record { | 655 ... | case2 b=sup = ⊥-elim ( ¬x=sup record { |
639 x<sup = λ {y} zy → subst (λ k → (y ≡ k) ∨ (y << k)) (trans b=x (sym &iso)) (IsSup.x<sup b=sup zy) } ) | 656 x<sup = λ {y} zy → subst (λ k → (y ≡ k) ∨ (y << k)) (trans b=x (sym &iso)) (IsSup.x<sup b=sup zy) } ) |
640 ... | no ¬ox = record { chain⊆A = {!!} ; f-next = {!!} ; f-total = ? | 657 ... | no ¬ox = record { chain⊆A = {!!} ; f-next = {!!} ; f-total = {!!} |
641 ; initial = {!!} ; chain∋init = {!!} ; is-max = {!!} } where --- limit ordinal case | 658 ; initial = {!!} ; chain∋init = {!!} ; is-max = {!!} } where --- limit ordinal case |
642 supf : Ordinal → HOD | 659 supf : Ordinal → HOD |
643 supf x = ZChain1.chain zc0 | 660 supf x = ZChain1.chain zc0 |
644 uzc : {z : Ordinal} → (u : UChain x ? z) → ZChain A f ay zc0 (UChain.u u) | 661 uzc : {z : Ordinal} → (u : UChain x {!!} z) → ZChain A f ay zc0 (UChain.u u) |
645 uzc {z} u = prev (UChain.u u) (UChain.u<x u) | 662 uzc {z} u = prev (UChain.u u) (UChain.u<x u) |
646 Uz : HOD | 663 Uz : HOD |
647 Uz = record { od = record { def = λ z → odef A z ∧ ( UChain z ? x ∨ FClosure A f y z ) } ; odmax = & A ; <odmax = ? } | 664 Uz = record { od = record { def = λ z → odef A z ∧ ( UChain z {!!} x ∨ FClosure A f y z ) } ; odmax = & A ; <odmax = {!!} } |
648 u-next : {z : Ordinal} → odef Uz z → odef Uz (f z) | 665 u-next : {z : Ordinal} → odef Uz z → odef Uz (f z) |
649 u-next {z} = ? | 666 u-next {z} = {!!} |
650 -- (case1 u) = case1 record { u = UChain.u u ; u<x = UChain.u<x u ; chain∋z = ZChain.f-next ( uzc u ) (UChain.chain∋z u) } | 667 -- (case1 u) = case1 record { u = UChain.u u ; u<x = UChain.u<x u ; chain∋z = ZChain.f-next ( uzc u ) (UChain.chain∋z u) } |
651 -- u-next {z} (case2 u) = case2 ( fsuc _ u ) | 668 -- u-next {z} (case2 u) = case2 ( fsuc _ u ) |
652 u-initial : {z : Ordinal} → odef Uz z → * y ≤ * z | 669 u-initial : {z : Ordinal} → odef Uz z → * y ≤ * z |
653 u-initial {z} = ? | 670 u-initial {z} = {!!} |
654 -- (case1 u) = ZChain.initial ( uzc u ) (UChain.chain∋z u) | 671 -- (case1 u) = ZChain.initial ( uzc u ) (UChain.chain∋z u) |
655 -- u-initial {z} (case2 u) = s≤fc _ f mf u | 672 -- u-initial {z} (case2 u) = s≤fc _ f mf u |
656 u-chain∋init : odef Uz y | 673 u-chain∋init : odef Uz y |
657 u-chain∋init = ? -- case2 ( init ay ) | 674 u-chain∋init = {!!} -- case2 ( init ay ) |
658 supf0 : Ordinal → HOD | 675 supf0 : Ordinal → HOD |
659 supf0 z with trio< z x | 676 supf0 z with trio< z x |
660 ... | tri< a ¬b ¬c = ZChain1.chain zc0 | 677 ... | tri< a ¬b ¬c = ZChain1.chain zc0 |
661 ... | tri≈ ¬a b ¬c = Uz | 678 ... | tri≈ ¬a b ¬c = Uz |
662 ... | tri> ¬a ¬b c = Uz | 679 ... | tri> ¬a ¬b c = Uz |
663 u-mono : {z : Ordinal} {w : Ordinal} → z o≤ w → w o≤ x → supf0 z ⊆' supf0 w | 680 u-mono : {z : Ordinal} {w : Ordinal} → z o≤ w → w o≤ x → supf0 z ⊆' supf0 w |
664 u-mono {z} {w} z≤w w≤x {i} with trio< z x | trio< w x | 681 u-mono {z} {w} z≤w w≤x {i} with trio< z x | trio< w x |
665 ... | s | t = ? | 682 ... | s | t = {!!} |
666 | 683 |
667 seq : Uz ≡ supf0 x | 684 seq : Uz ≡ supf0 x |
668 seq with trio< x x | 685 seq with trio< x x |
669 ... | tri< a ¬b ¬c = ⊥-elim ( ¬b refl ) | 686 ... | tri< a ¬b ¬c = ⊥-elim ( ¬b refl ) |
670 ... | tri≈ ¬a b ¬c = refl | 687 ... | tri≈ ¬a b ¬c = refl |
671 ... | tri> ¬a ¬b c = refl | 688 ... | tri> ¬a ¬b c = refl |
672 seq<x : {b : Ordinal } → (b<x : b o< x ) → ZChain1.chain zc0 ≡ supf0 b | 689 seq<x : {b : Ordinal } → (b<x : b o< x ) → ZChain1.chain zc0 ≡ supf0 b |
673 seq<x {b} b<x with trio< b x | 690 seq<x {b} b<x with trio< b x |
674 ... | tri< a ¬b ¬c = ? -- cong (λ k → (ZChain1.chain zc0) o<-irr -- b<x ≡ a | 691 ... | tri< a ¬b ¬c = {!!} -- cong (λ k → (ZChain1.chain zc0) o<-irr -- b<x ≡ a |
675 ... | tri≈ ¬a b₁ ¬c = ⊥-elim (¬a b<x ) | 692 ... | tri≈ ¬a b₁ ¬c = ⊥-elim (¬a b<x ) |
676 ... | tri> ¬a ¬b c = ⊥-elim (¬a b<x ) | 693 ... | tri> ¬a ¬b c = ⊥-elim (¬a b<x ) |
677 ord≤< : {x y z : Ordinal} → x o< z → z o≤ y → x o< y | 694 ord≤< : {x y z : Ordinal} → x o< z → z o≤ y → x o< y |
678 ord≤< {x} {y} {z} x<z z≤y with osuc-≡< z≤y | 695 ord≤< {x} {y} {z} x<z z≤y with osuc-≡< z≤y |
679 ... | case1 z=y = subst (λ k → x o< k ) z=y x<z | 696 ... | case1 z=y = subst (λ k → x o< k ) z=y x<z |