comparison src/OrdUtil.agda @ 622:7ddb909eb9ab

dead end
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 20 Jun 2022 07:20:17 +0900
parents 267a44ce18b5
children
comparison
equal deleted inserted replaced
621:267a44ce18b5 622:7ddb909eb9ab
262 os← : Ordinal → Ordinal 262 os← : Ordinal → Ordinal
263 os←limit : (x : Ordinal) → os← x o< maxordinal 263 os←limit : (x : Ordinal) → os← x o< maxordinal
264 os-iso← : {x : Ordinal} → os→ (os← x) (os←limit x) ≡ x 264 os-iso← : {x : Ordinal} → os→ (os← x) (os←limit x) ≡ x
265 os-iso→ : {x : Ordinal} → (lt : x o< maxordinal ) → os← (os→ x lt) ≡ x 265 os-iso→ : {x : Ordinal} → (lt : x o< maxordinal ) → os← (os→ x lt) ≡ x
266 266
267 TransFiniteInd : { ψ : Ordinal → Set (suc n) }
268 → { prop : ( (x : Ordinal) → ψ x) → Ordinal → Set (suc n) }
269 → ( ind : (x : Ordinal) → ( (y : Ordinal ) → y o< x → ψ y ) → ψ x )
270 → ( pind : (x : Ordinal) → ( (y : Ordinal ) → y o< x → prop (TransFinite {ψ} ind) y ) → prop (TransFinite {ψ} ind) x )
271 → (x : Ordinal) -> prop (TransFinite {ψ} ind) x
272 TransFiniteInd {ψ} {prop} ind pind = {!!}
273
274
275 module o≤-Reasoning {n : Level} (O : Ordinals {n} ) where 267 module o≤-Reasoning {n : Level} (O : Ordinals {n} ) where
276 268
277 -- open inOrdinal O 269 -- open inOrdinal O
278 270
279 resp-o< : _o<_ Respects₂ _≡_ 271 resp-o< : _o<_ Respects₂ _≡_