Mercurial > hg > Members > kono > Proof > ZF-in-agda
view src/OrdUtil.agda @ 622:7ddb909eb9ab
dead end
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 20 Jun 2022 07:20:17 +0900 |
parents | 267a44ce18b5 |
children |
line wrap: on
line source
open import Level open import Ordinals module OrdUtil {n : Level} (O : Ordinals {n} ) where open import logic open import nat open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Data.Empty open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import Relation.Binary hiding (_⇔_) open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal open Ordinals.IsNext isNext o<-dom : { x y : Ordinal } → x o< y → Ordinal o<-dom {x} _ = x o<-cod : { x y : Ordinal } → x o< y → Ordinal o<-cod {_} {y} _ = y o<-subst : {Z X z x : Ordinal } → Z o< X → Z ≡ z → X ≡ x → z o< x o<-subst df refl refl = df o<¬≡ : { ox oy : Ordinal } → ox ≡ oy → ox o< oy → ⊥ o<¬≡ {ox} {oy} eq lt with trio< ox oy o<¬≡ {ox} {oy} eq lt | tri< a ¬b ¬c = ¬b eq o<¬≡ {ox} {oy} eq lt | tri≈ ¬a b ¬c = ¬a lt o<¬≡ {ox} {oy} eq lt | tri> ¬a ¬b c = ¬b eq o<> : {x y : Ordinal } → y o< x → x o< y → ⊥ o<> {ox} {oy} lt tl with trio< ox oy o<> {ox} {oy} lt tl | tri< a ¬b ¬c = ¬c lt o<> {ox} {oy} lt tl | tri≈ ¬a b ¬c = ¬a tl o<> {ox} {oy} lt tl | tri> ¬a ¬b c = ¬a tl osuc-< : { x y : Ordinal } → y o< osuc x → x o< y → ⊥ osuc-< {x} {y} y<ox x<y with osuc-≡< y<ox osuc-< {x} {y} y<ox x<y | case1 refl = o<¬≡ refl x<y osuc-< {x} {y} y<ox x<y | case2 y<x = o<> x<y y<x osucc : {ox oy : Ordinal } → oy o< ox → osuc oy o< osuc ox ---- y < osuc y < x < osuc x ---- y < osuc y = x < osuc x ---- y < osuc y > x < osuc x -> y = x ∨ x < y → ⊥ osucc {ox} {oy} oy<ox with trio< (osuc oy) ox osucc {ox} {oy} oy<ox | tri< a ¬b ¬c = ordtrans a <-osuc osucc {ox} {oy} oy<ox | tri≈ ¬a refl ¬c = <-osuc osucc {ox} {oy} oy<ox | tri> ¬a ¬b c with osuc-≡< c osucc {ox} {oy} oy<ox | tri> ¬a ¬b c | case1 eq = ⊥-elim (o<¬≡ (sym eq) oy<ox) osucc {ox} {oy} oy<ox | tri> ¬a ¬b c | case2 lt = ⊥-elim (o<> lt oy<ox) osucprev : {ox oy : Ordinal } → osuc oy o< osuc ox → oy o< ox osucprev {ox} {oy} oy<ox with trio< oy ox osucprev {ox} {oy} oy<ox | tri< a ¬b ¬c = a osucprev {ox} {oy} oy<ox | tri≈ ¬a b ¬c = ⊥-elim (o<¬≡ (cong (λ k → osuc k) b) oy<ox ) osucprev {ox} {oy} oy<ox | tri> ¬a ¬b c = ⊥-elim (o<> (osucc c) oy<ox ) open _∧_ osuc2 : ( x y : Ordinal ) → ( osuc x o< osuc (osuc y )) ⇔ (x o< osuc y) proj2 (osuc2 x y) lt = osucc lt proj1 (osuc2 x y) ox<ooy with osuc-≡< ox<ooy proj1 (osuc2 x y) ox<ooy | case1 ox=oy = o<-subst <-osuc refl ox=oy proj1 (osuc2 x y) ox<ooy | case2 ox<oy = ordtrans <-osuc ox<oy o≡? : (x y : Ordinal) → Dec ( x ≡ y ) o≡? x y with trio< x y ... | tri< a ¬b ¬c = no ¬b ... | tri≈ ¬a b ¬c = yes b ... | tri> ¬a ¬b c = no ¬b _o≤_ : Ordinal → Ordinal → Set n a o≤ b = a o< osuc b -- (a ≡ b) ∨ ( a o< b ) xo<ab : {oa ob : Ordinal } → ( {ox : Ordinal } → ox o< oa → ox o< ob ) → oa o< osuc ob xo<ab {oa} {ob} a→b with trio< oa ob xo<ab {oa} {ob} a→b | tri< a ¬b ¬c = ordtrans a <-osuc xo<ab {oa} {ob} a→b | tri≈ ¬a refl ¬c = <-osuc xo<ab {oa} {ob} a→b | tri> ¬a ¬b c = ⊥-elim ( o<¬≡ refl (a→b c ) ) maxα : Ordinal → Ordinal → Ordinal maxα x y with trio< x y maxα x y | tri< a ¬b ¬c = y maxα x y | tri> ¬a ¬b c = x maxα x y | tri≈ ¬a refl ¬c = x omin : Ordinal → Ordinal → Ordinal omin x y with trio< x y omin x y | tri< a ¬b ¬c = x omin x y | tri> ¬a ¬b c = y omin x y | tri≈ ¬a refl ¬c = x min1 : {x y z : Ordinal } → z o< x → z o< y → z o< omin x y min1 {x} {y} {z} z<x z<y with trio< x y min1 {x} {y} {z} z<x z<y | tri< a ¬b ¬c = z<x min1 {x} {y} {z} z<x z<y | tri≈ ¬a refl ¬c = z<x min1 {x} {y} {z} z<x z<y | tri> ¬a ¬b c = z<y -- -- max ( osuc x , osuc y ) -- omax : ( x y : Ordinal ) → Ordinal omax x y with trio< x y omax x y | tri< a ¬b ¬c = osuc y omax x y | tri> ¬a ¬b c = osuc x omax x y | tri≈ ¬a refl ¬c = osuc x omax< : ( x y : Ordinal ) → x o< y → osuc y ≡ omax x y omax< x y lt with trio< x y omax< x y lt | tri< a ¬b ¬c = refl omax< x y lt | tri≈ ¬a b ¬c = ⊥-elim (¬a lt ) omax< x y lt | tri> ¬a ¬b c = ⊥-elim (¬a lt ) omax≤ : ( x y : Ordinal ) → x o≤ y → osuc y ≡ omax x y omax≤ x y le with trio< x y omax≤ x y le | tri< a ¬b ¬c = refl omax≤ x y le | tri≈ ¬a refl ¬c = refl omax≤ x y le | tri> ¬a ¬b c with osuc-≡< le omax≤ x y le | tri> ¬a ¬b c | case1 eq = ⊥-elim (¬b eq) omax≤ x y le | tri> ¬a ¬b c | case2 x<y = ⊥-elim (¬a x<y) omax≡ : ( x y : Ordinal ) → x ≡ y → osuc y ≡ omax x y omax≡ x y eq with trio< x y omax≡ x y eq | tri< a ¬b ¬c = ⊥-elim (¬b eq ) omax≡ x y eq | tri≈ ¬a refl ¬c = refl omax≡ x y eq | tri> ¬a ¬b c = ⊥-elim (¬b eq ) omax-x : ( x y : Ordinal ) → x o< omax x y omax-x x y with trio< x y omax-x x y | tri< a ¬b ¬c = ordtrans a <-osuc omax-x x y | tri> ¬a ¬b c = <-osuc omax-x x y | tri≈ ¬a refl ¬c = <-osuc omax-y : ( x y : Ordinal ) → y o< omax x y omax-y x y with trio< x y omax-y x y | tri< a ¬b ¬c = <-osuc omax-y x y | tri> ¬a ¬b c = ordtrans c <-osuc omax-y x y | tri≈ ¬a refl ¬c = <-osuc omxx : ( x : Ordinal ) → omax x x ≡ osuc x omxx x with trio< x x omxx x | tri< a ¬b ¬c = ⊥-elim (¬b refl ) omxx x | tri> ¬a ¬b c = ⊥-elim (¬b refl ) omxx x | tri≈ ¬a refl ¬c = refl omxxx : ( x : Ordinal ) → omax x (omax x x ) ≡ osuc (osuc x) omxxx x = trans ( cong ( λ k → omax x k ) (omxx x )) (sym ( omax< x (osuc x) <-osuc )) open _∧_ o≤-refl : { i j : Ordinal } → i ≡ j → i o≤ j o≤-refl {i} {j} eq = subst (λ k → i o< osuc k ) eq <-osuc OrdTrans : Transitive _o≤_ OrdTrans a≤b b≤c with osuc-≡< a≤b | osuc-≡< b≤c OrdTrans a≤b b≤c | case1 refl | case1 refl = <-osuc OrdTrans a≤b b≤c | case1 refl | case2 a≤c = ordtrans a≤c <-osuc OrdTrans a≤b b≤c | case2 a≤c | case1 refl = ordtrans a≤c <-osuc OrdTrans a≤b b≤c | case2 a<b | case2 b<c = ordtrans (ordtrans a<b b<c) <-osuc OrdPreorder : Preorder n n n OrdPreorder = record { Carrier = Ordinal ; _≈_ = _≡_ ; _∼_ = _o≤_ ; isPreorder = record { isEquivalence = record { refl = refl ; sym = sym ; trans = trans } ; reflexive = o≤-refl ; trans = OrdTrans } } FExists : {m l : Level} → ( ψ : Ordinal → Set m ) → {p : Set l} ( P : { y : Ordinal } → ψ y → ¬ p ) → (exists : ¬ (∀ y → ¬ ( ψ y ) )) → ¬ p FExists {m} {l} ψ {p} P = contra-position ( λ p y ψy → P {y} ψy p ) nexto∅ : {x : Ordinal} → o∅ o< next x nexto∅ {x} with trio< o∅ x nexto∅ {x} | tri< a ¬b ¬c = ordtrans a x<nx nexto∅ {x} | tri≈ ¬a b ¬c = subst (λ k → k o< next x) (sym b) x<nx nexto∅ {x} | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c ) next< : {x y z : Ordinal} → x o< next z → y o< next x → y o< next z next< {x} {y} {z} x<nz y<nx with trio< y (next z) next< {x} {y} {z} x<nz y<nx | tri< a ¬b ¬c = a next< {x} {y} {z} x<nz y<nx | tri≈ ¬a b ¬c = ⊥-elim (¬nx<nx x<nz (subst (λ k → k o< next x) b y<nx) (λ w nz=ow → o<¬≡ nz=ow (subst₂ (λ j k → j o< k ) (sym nz=ow) nz=ow (osuc<nx (subst (λ k → w o< k ) (sym nz=ow) <-osuc) )))) next< {x} {y} {z} x<nz y<nx | tri> ¬a ¬b c = ⊥-elim (¬nx<nx x<nz (ordtrans c y<nx ) (λ w nz=ow → o<¬≡ (sym nz=ow) (osuc<nx (subst (λ k → w o< k ) (sym nz=ow) <-osuc )))) osuc< : {x y : Ordinal} → osuc x ≡ y → x o< y osuc< {x} {y} refl = <-osuc nexto=n : {x y : Ordinal} → x o< next (osuc y) → x o< next y nexto=n {x} {y} x<noy = next< (osuc<nx x<nx) x<noy nexto≡ : {x : Ordinal} → next x ≡ next (osuc x) nexto≡ {x} with trio< (next x) (next (osuc x) ) -- next x o< next (osuc x ) -> osuc x o< next x o< next (osuc x) -> next x ≡ osuc z -> z o o< next x -> osuc z o< next x -> next x o< next x nexto≡ {x} | tri< a ¬b ¬c = ⊥-elim (¬nx<nx (osuc<nx x<nx ) a (λ z eq → o<¬≡ (sym eq) (osuc<nx (osuc< (sym eq))))) nexto≡ {x} | tri≈ ¬a b ¬c = b -- next (osuc x) o< next x -> osuc x o< next (osuc x) o< next x -> next (osuc x) ≡ osuc z -> z o o< next (osuc x) ... nexto≡ {x} | tri> ¬a ¬b c = ⊥-elim (¬nx<nx (ordtrans <-osuc x<nx) c (λ z eq → o<¬≡ (sym eq) (osuc<nx (osuc< (sym eq))))) next-is-limit : {x y : Ordinal} → ¬ (next x ≡ osuc y) next-is-limit {x} {y} eq = o<¬≡ (sym eq) (osuc<nx y<nx) where y<nx : y o< next x y<nx = osuc< (sym eq) omax<next : {x y : Ordinal} → x o< y → omax x y o< next y omax<next {x} {y} x<y = subst (λ k → k o< next y ) (omax< _ _ x<y ) (osuc<nx x<nx) x<ny→≡next : {x y : Ordinal} → x o< y → y o< next x → next x ≡ next y x<ny→≡next {x} {y} x<y y<nx with trio< (next x) (next y) x<ny→≡next {x} {y} x<y y<nx | tri< a ¬b ¬c = -- x < y < next x < next y ∧ next x = osuc z ⊥-elim ( ¬nx<nx y<nx a (λ z eq → o<¬≡ (sym eq) (osuc<nx (subst (λ k → z o< k ) (sym eq) <-osuc )))) x<ny→≡next {x} {y} x<y y<nx | tri≈ ¬a b ¬c = b x<ny→≡next {x} {y} x<y y<nx | tri> ¬a ¬b c = -- x < y < next y < next x ⊥-elim ( ¬nx<nx (ordtrans x<y x<nx) c (λ z eq → o<¬≡ (sym eq) (osuc<nx (subst (λ k → z o< k ) (sym eq) <-osuc )))) ≤next : {x y : Ordinal} → x o≤ y → next x o≤ next y ≤next {x} {y} x≤y with trio< (next x) y ≤next {x} {y} x≤y | tri< a ¬b ¬c = ordtrans a (ordtrans x<nx <-osuc ) ≤next {x} {y} x≤y | tri≈ ¬a refl ¬c = (ordtrans x<nx <-osuc ) ≤next {x} {y} x≤y | tri> ¬a ¬b c with osuc-≡< x≤y ≤next {x} {y} x≤y | tri> ¬a ¬b c | case1 refl = o≤-refl refl -- x = y < next x ≤next {x} {y} x≤y | tri> ¬a ¬b c | case2 x<y = o≤-refl (x<ny→≡next x<y c) -- x ≤ y < next x x<ny→≤next : {x y : Ordinal} → x o< next y → next x o≤ next y x<ny→≤next {x} {y} x<ny with trio< x y x<ny→≤next {x} {y} x<ny | tri< a ¬b ¬c = ≤next (ordtrans a <-osuc ) x<ny→≤next {x} {y} x<ny | tri≈ ¬a refl ¬c = o≤-refl refl x<ny→≤next {x} {y} x<ny | tri> ¬a ¬b c = o≤-refl (sym ( x<ny→≡next c x<ny )) omax<nomax : {x y : Ordinal} → omax x y o< next (omax x y ) omax<nomax {x} {y} with trio< x y omax<nomax {x} {y} | tri< a ¬b ¬c = subst (λ k → osuc y o< k ) nexto≡ (osuc<nx x<nx ) omax<nomax {x} {y} | tri≈ ¬a refl ¬c = subst (λ k → osuc x o< k ) nexto≡ (osuc<nx x<nx ) omax<nomax {x} {y} | tri> ¬a ¬b c = subst (λ k → osuc x o< k ) nexto≡ (osuc<nx x<nx ) omax<nx : {x y z : Ordinal} → x o< next z → y o< next z → omax x y o< next z omax<nx {x} {y} {z} x<nz y<nz with trio< x y omax<nx {x} {y} {z} x<nz y<nz | tri< a ¬b ¬c = osuc<nx y<nz omax<nx {x} {y} {z} x<nz y<nz | tri≈ ¬a refl ¬c = osuc<nx y<nz omax<nx {x} {y} {z} x<nz y<nz | tri> ¬a ¬b c = osuc<nx x<nz nn<omax : {x nx ny : Ordinal} → x o< next nx → x o< next ny → x o< next (omax nx ny) nn<omax {x} {nx} {ny} xnx xny with trio< nx ny nn<omax {x} {nx} {ny} xnx xny | tri< a ¬b ¬c = subst (λ k → x o< k ) nexto≡ xny nn<omax {x} {nx} {ny} xnx xny | tri≈ ¬a refl ¬c = subst (λ k → x o< k ) nexto≡ xny nn<omax {x} {nx} {ny} xnx xny | tri> ¬a ¬b c = subst (λ k → x o< k ) nexto≡ xnx record OrdinalSubset (maxordinal : Ordinal) : Set (suc n) where field os→ : (x : Ordinal) → x o< maxordinal → Ordinal os← : Ordinal → Ordinal os←limit : (x : Ordinal) → os← x o< maxordinal os-iso← : {x : Ordinal} → os→ (os← x) (os←limit x) ≡ x os-iso→ : {x : Ordinal} → (lt : x o< maxordinal ) → os← (os→ x lt) ≡ x module o≤-Reasoning {n : Level} (O : Ordinals {n} ) where -- open inOrdinal O resp-o< : _o<_ Respects₂ _≡_ resp-o< = resp₂ _o<_ trans1 : {i j k : Ordinal} → i o< j → j o< osuc k → i o< k trans1 {i} {j} {k} i<j j<ok with osuc-≡< j<ok trans1 {i} {j} {k} i<j j<ok | case1 refl = i<j trans1 {i} {j} {k} i<j j<ok | case2 j<k = ordtrans i<j j<k trans2 : {i j k : Ordinal} → i o< osuc j → j o< k → i o< k trans2 {i} {j} {k} i<oj j<k with osuc-≡< i<oj trans2 {i} {j} {k} i<oj j<k | case1 refl = j<k trans2 {i} {j} {k} i<oj j<k | case2 i<j = ordtrans i<j j<k open import Relation.Binary.Reasoning.Base.Triple (Preorder.isPreorder OrdPreorder) ordtrans --<-trans (resp₂ _o<_) --(resp₂ _<_) (λ x → ordtrans x <-osuc ) --<⇒≤ trans1 --<-transˡ trans2 --<-transʳ public -- hiding (_≈⟨_⟩_)