comparison src/Tychonoff.agda @ 1279:7e7d8d825632

P x Q ⇆ Q x P done
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 06 Apr 2023 09:16:52 +0900
parents b15dd4438d50
children f4dac8be0a01
comparison
equal deleted inserted replaced
1278:2cbe0db250da 1279:7e7d8d825632
33 open ODC O 33 open ODC O
34 34
35 open import filter O 35 open import filter O
36 open import ZProduct O 36 open import ZProduct O
37 open import Topology O 37 open import Topology O
38 -- open import maximum-filter O 38 open import maximum-filter O
39 39
40 open Filter 40 open Filter
41 open Topology 41 open Topology
42 42
43 -- 43 --
78 field 78 field
79 limit : Ordinal 79 limit : Ordinal
80 P∋limit : odef P limit 80 P∋limit : odef P limit
81 is-limit : {v : Ordinal} → Neighbor TP limit v → filter F ∋ (* v) 81 is-limit : {v : Ordinal} → Neighbor TP limit v → filter F ∋ (* v)
82 82
83 --
84 -- If Any ultra filter has a limit that is all neighbor of the limit is in the filter,
85 -- it has finite intersection property.
86 --
87 -- Finite intersection defines a filter, so we have a ultra filter becaause Zorn lemma maximizing it.
88 -- If the limit of filter is not contained by a closed set p in FIP, it is in P \ p. It is open and
89 -- contains the limit, so it is in the ultra filter. This means p and P \ p is in the filter, which
90 -- contradicts proper of the ultra filter.
91 --
83 UFLP→FIP : {P : HOD} (TP : Topology P) → 92 UFLP→FIP : {P : HOD} (TP : Topology P) →
84 ((F : Filter {Power P} {P} (λ x → x) ) (UF : ultra-filter F ) → UFLP TP F UF ) → FIP TP 93 ((F : Filter {Power P} {P} (λ x → x) ) (UF : ultra-filter F ) → UFLP TP F UF ) → FIP TP
85 UFLP→FIP {P} TP uflp with trio< (& P) o∅ 94 UFLP→FIP {P} TP uflp with trio< (& P) o∅
86 ... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a ) 95 ... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a )
87 ... | tri≈ ¬a P=0 ¬c = record { limit = λ CX fip → o∅ ; is-limit = fip03 } where 96 ... | tri≈ ¬a P=0 ¬c = record { limit = λ CX fip → o∅ ; is-limit = fip03 } where
174 -- then we have maximum ultra filter ( Zorn lemma ) 183 -- then we have maximum ultra filter ( Zorn lemma )
175 -- to debug this file, commet out the maximum filter and open import 184 -- to debug this file, commet out the maximum filter and open import
176 -- otherwise the check requires a minute 185 -- otherwise the check requires a minute
177 -- 186 --
178 maxf : {X : Ordinal} → o∅ o< X → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → MaximumFilter (λ x → x) (F CSX fp) 187 maxf : {X : Ordinal} → o∅ o< X → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → MaximumFilter (λ x → x) (F CSX fp)
179 maxf {X} 0<X CSX fp = ? -- F→Maximum {Power P} {P} (λ x → x) (CAP P) (F CSX fp) 0<PP (N∋nc 0<X CSX fp) (proper CSX fp) 188 maxf {X} 0<X CSX fp = F→Maximum {Power P} {P} (λ x → x) (CAP P) (F CSX fp) 0<PP (N∋nc 0<X CSX fp) (proper CSX fp)
180 mf : {X : Ordinal} → o∅ o< X → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → Filter {Power P} {P} (λ x → x) 189 mf : {X : Ordinal} → o∅ o< X → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → Filter {Power P} {P} (λ x → x)
181 mf {X} 0<X CSX fp = MaximumFilter.mf (maxf 0<X CSX fp) 190 mf {X} 0<X CSX fp = MaximumFilter.mf (maxf 0<X CSX fp)
182 ultraf : {X : Ordinal} → (0<X : o∅ o< X ) → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → ultra-filter ( mf 0<X CSX fp) 191 ultraf : {X : Ordinal} → (0<X : o∅ o< X ) → (CSX : * X ⊆ CS TP) → (fp : fip {X} CSX) → ultra-filter ( mf 0<X CSX fp)
183 ultraf {X} 0<X CSX fp = ? -- F→ultra {Power P} {P} (λ x → x) (CAP P) (F CSX fp) 0<PP (N∋nc 0<X CSX fp) (proper CSX fp) 192 ultraf {X} 0<X CSX fp = F→ultra {Power P} {P} (λ x → x) (CAP P) (F CSX fp) 0<PP (N∋nc 0<X CSX fp) (proper CSX fp)
184 -- 193 --
185 -- so it has a limit as a limit of UIP 194 -- so it has a limit as a limit of FIP
186 -- 195 --
187 limit : {X : Ordinal} → (CSX : * X ⊆ CS TP) → fip {X} CSX → Ordinal 196 limit : {X : Ordinal} → (CSX : * X ⊆ CS TP) → fip {X} CSX → Ordinal
188 limit {X} CSX fp with trio< o∅ X 197 limit {X} CSX fp with trio< o∅ X
189 ... | tri< 0<X ¬b ¬c = UFLP.limit ( uflp ( mf 0<X CSX fp ) (ultraf 0<X CSX fp)) 198 ... | tri< 0<X ¬b ¬c = UFLP.limit ( uflp ( mf 0<X CSX fp ) (ultraf 0<X CSX fp))
190 ... | tri≈ ¬a 0=X ¬c = o∅ 199 ... | tri≈ ¬a 0=X ¬c = o∅
241 x⊆Clx : {P : HOD} (TP : Topology P) → {x : HOD} → x ⊆ P → x ⊆ Cl TP x 250 x⊆Clx : {P : HOD} (TP : Topology P) → {x : HOD} → x ⊆ P → x ⊆ Cl TP x
242 x⊆Clx {P} TP {x} x<p {y} xy = ⟪ x<p xy , (λ c csc x<c → x<c xy ) ⟫ 251 x⊆Clx {P} TP {x} x<p {y} xy = ⟪ x<p xy , (λ c csc x<c → x<c xy ) ⟫
243 P⊆Clx : {P : HOD} (TP : Topology P) → {x : HOD} → x ⊆ P → Cl TP x ⊆ P 252 P⊆Clx : {P : HOD} (TP : Topology P) → {x : HOD} → x ⊆ P → Cl TP x ⊆ P
244 P⊆Clx {P} TP {x} x<p {y} xy = proj1 xy 253 P⊆Clx {P} TP {x} x<p {y} xy = proj1 xy
245 254
255 --
256 -- Finite intersection property implies that any ultra filter have a limit, that is, neighbors of the limit is in the filter.
257 --
258 -- An ultra filter F is given. Take a closure of a filter. It is closed and it has finite intersection property, because F is porper.
259 -- So it has a limit as a FIP. If a neighbor p which contains the limit, p or P \ p is in the ultra filter.
260 -- If it is in P \ p, it cannot contains the limit, contradiction.
261 --
246 FIP→UFLP : {P : HOD} (TP : Topology P) → FIP TP 262 FIP→UFLP : {P : HOD} (TP : Topology P) → FIP TP
247 → (F : Filter {Power P} {P} (λ x → x)) (UF : ultra-filter F ) → UFLP {P} TP F UF 263 → (F : Filter {Power P} {P} (λ x → x)) (UF : ultra-filter F ) → UFLP {P} TP F UF
248 FIP→UFLP {P} TP fip F UF = record { limit = FIP.limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01 264 FIP→UFLP {P} TP fip F UF = record { limit = FIP.limit fip (subst (λ k → k ⊆ CS TP) (sym *iso) CF⊆CS) ufl01
249 ; P∋limit = ufl10 ; is-limit = ufl00 } where 265 ; P∋limit = ufl10 ; is-limit = ufl00 } where
250 F∋P : odef (filter F) (& P) 266 F∋P : odef (filter F) (& P)
343 359
344 import Axiom.Extensionality.Propositional 360 import Axiom.Extensionality.Propositional
345 postulate f-extensionality : { n m : Level} → Axiom.Extensionality.Propositional.Extensionality n m 361 postulate f-extensionality : { n m : Level} → Axiom.Extensionality.Propositional.Extensionality n m
346 open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) 362 open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ )
347 363
348 FilterQP : {P Q : HOD } → (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) 364 -- FilterQP : {P Q : HOD } → (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x))
349 → Filter {Power (ZFP Q P)} {ZFP Q P} (λ x → x) 365 -- → Filter {Power (ZFP Q P)} {ZFP Q P} (λ x → x)
350 FilterQP {P} {Q} F = record { filter = ? ; f⊆L = ? ; filter1 = ? ; filter2 = ? } 366 -- FilterQP {P} {Q} F = record { filter = ? ; f⊆L = ? ; filter1 = ? ; filter2 = ? }
351 367 --
352 projection-of-filter : {P Q : HOD } → (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) 368 -- projection-of-filter : {P Q : HOD } → (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x))
353 → Filter {Power P} {P} (λ x → x) 369 -- → Filter {Power P} {P} (λ x → x)
354 projection-of-filter = ? 370 -- projection-of-filter = ?
355 371 --
356 projection-of-ultra-filter : {P Q : HOD } → (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) (UF : ultra-filter F) 372 -- projection-of-ultra-filter : {P Q : HOD } → (F : Filter {Power (ZFP P Q)} {ZFP P Q} (λ x → x)) (UF : ultra-filter F)
357 → ultra-filter (projection-of-filter F) 373 -- → ultra-filter (projection-of-filter F)
358 projection-of-ultra-filter = ? 374 -- projection-of-ultra-filter = ?
359 375
376 --
377 -- We have UFLP both in P and Q. Given an ultra filter F on P x Q. It has limits on P and Q because a projection of ultra filter
378 -- is a ultra filter. Show the product of the limits is a limit of P x Q. A neighbor of P x Q contains subbase of P x Q,
379 -- which is either inverse projection x of P or Q. The x in in projection of F, because of UFLP. So it is in F, because of the
380 -- property of the filter.
381 --
360 Tychonoff : {P Q : HOD } → (TP : Topology P) → (TQ : Topology Q) → Compact TP → Compact TQ → Compact (ProductTopology TP TQ) 382 Tychonoff : {P Q : HOD } → (TP : Topology P) → (TQ : Topology Q) → Compact TP → Compact TQ → Compact (ProductTopology TP TQ)
361 Tychonoff {P} {Q} TP TQ CP CQ = FIP→Compact (ProductTopology TP TQ) (UFLP→FIP (ProductTopology TP TQ) uflPQ ) where 383 Tychonoff {P} {Q} TP TQ CP CQ = FIP→Compact (ProductTopology TP TQ) (UFLP→FIP (ProductTopology TP TQ) uflPQ ) where
362 uflP : (F : Filter {Power P} {P} (λ x → x)) (UF : ultra-filter F) 384 uflP : (F : Filter {Power P} {P} (λ x → x)) (UF : ultra-filter F)
363 → UFLP TP F UF 385 → UFLP TP F UF
364 uflP F UF = FIP→UFLP TP (Compact→FIP TP CP) F UF 386 uflP F UF = FIP→UFLP TP (Compact→FIP TP CP) F UF