Mercurial > hg > Members > kono > Proof > ZF-in-agda
comparison OD.agda @ 321:a81824502ebd
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 03 Jul 2020 22:22:59 +0900 |
parents | 21203fe0342f |
children | a9d380378efd |
comparison
equal
deleted
inserted
replaced
320:21203fe0342f | 321:a81824502ebd |
---|---|
309 | 309 |
310 infinite : HOD | 310 infinite : HOD |
311 infinite = record { od = record { def = λ x → infinite-d x } ; odmax = next o∅ ; <odmax = lemma } where | 311 infinite = record { od = record { def = λ x → infinite-d x } ; odmax = next o∅ ; <odmax = lemma } where |
312 lemma : {y : Ordinal} → infinite-d y → y o< next o∅ | 312 lemma : {y : Ordinal} → infinite-d y → y o< next o∅ |
313 lemma {o∅} iφ = proj1 next-limit | 313 lemma {o∅} iφ = proj1 next-limit |
314 lemma {n} (isuc i) = {!!} where | 314 lemma (isuc {x} i) = lemma1 where -- proj2 next-limit ? ( lemma i ) |
315 lemma1 = proj2 next-limit | 315 lemma1 : od→ord (Union (ord→od x , (ord→od x , ord→od x))) o< next o∅ |
316 lemma1 = ? | |
317 | |
316 | 318 |
317 | 319 |
318 _=h=_ : (x y : HOD) → Set n | 320 _=h=_ : (x y : HOD) → Set n |
319 x =h= y = od x == od y | 321 x =h= y = od x == od y |
320 | 322 |