Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 321:a81824502ebd
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 03 Jul 2020 22:22:59 +0900 |
parents | 21203fe0342f |
children | a9d380378efd |
files | OD.agda Ordinals.agda |
diffstat | 2 files changed, 6 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Fri Jul 03 21:58:01 2020 +0900 +++ b/OD.agda Fri Jul 03 22:22:59 2020 +0900 @@ -311,8 +311,10 @@ infinite = record { od = record { def = λ x → infinite-d x } ; odmax = next o∅ ; <odmax = lemma } where lemma : {y : Ordinal} → infinite-d y → y o< next o∅ lemma {o∅} iφ = proj1 next-limit - lemma {n} (isuc i) = {!!} where - lemma1 = proj2 next-limit + lemma (isuc {x} i) = lemma1 where -- proj2 next-limit ? ( lemma i ) + lemma1 : od→ord (Union (ord→od x , (ord→od x , ord→od x))) o< next o∅ + lemma1 = ? + _=h=_ : (x y : HOD) → Set n
--- a/Ordinals.agda Fri Jul 03 21:58:01 2020 +0900 +++ b/Ordinals.agda Fri Jul 03 22:22:59 2020 +0900 @@ -21,7 +21,7 @@ <-osuc : { x : ord } → x o< osuc x osuc-≡< : { a x : ord } → x o< osuc a → (x ≡ a ) ∨ (x o< a) is-limit : ( x : ord ) → Dec ( ¬ ((y : ord) → x ≡ osuc y) ) - next-limit : { x : ord } → (x o< next x )∧ (¬ ((y : ord) → next x ≡ osuc y) ) + next-limit : { y : ord } → (y o< next y ) ∧ ((x : ord) → x o< next y → osuc x o< next y ) TransFinite : { ψ : ord → Set (suc n) } → ( (x : ord) → ( (y : ord ) → y o< x → ψ y ) → ψ x ) → ∀ (x : ord) → ψ x @@ -58,7 +58,7 @@ <-osuc = IsOrdinals.<-osuc (Ordinals.isOrdinal O) TransFinite = IsOrdinals.TransFinite (Ordinals.isOrdinal O) next-limit = IsOrdinals.next-limit (Ordinals.isOrdinal O) - + o<-dom : { x y : Ordinal } → x o< y → Ordinal o<-dom {x} _ = x