Mercurial > hg > Members > kono > Proof > ZF-in-agda
comparison src/OD.agda @ 1148:d39c79bb71f0
recovered
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 16 Jan 2023 14:01:45 +0900 |
parents | f46a16cebbab |
children | 7d2bae0ff36b |
comparison
equal
deleted
inserted
replaced
1146:1966127fc14f | 1148:d39c79bb71f0 |
---|---|
214 eq← ∅0 {w} lt = lift (¬x<0 lt) | 214 eq← ∅0 {w} lt = lift (¬x<0 lt) |
215 | 215 |
216 ∅< : { x y : HOD } → odef x (& y ) → ¬ ( od x == od od∅ ) | 216 ∅< : { x y : HOD } → odef x (& y ) → ¬ ( od x == od od∅ ) |
217 ∅< {x} {y} d eq with eq→ (==-trans eq (==-sym ∅0) ) d | 217 ∅< {x} {y} d eq with eq→ (==-trans eq (==-sym ∅0) ) d |
218 ∅< {x} {y} d eq | lift () | 218 ∅< {x} {y} d eq | lift () |
219 | |
220 0<P→ne : { x : HOD } → o∅ o< & x → ¬ ( od x == od od∅ ) | |
221 0<P→ne {x} 0<x eq = ⊥-elim ( o<¬≡ (sym (=od∅→≡o∅ eq)) 0<x ) | |
219 | 222 |
220 ∈∅< : { x : HOD } {y : Ordinal } → odef x y → o∅ o< (& x) | 223 ∈∅< : { x : HOD } {y : Ordinal } → odef x y → o∅ o< (& x) |
221 ∈∅< {x} {y} d with trio< o∅ (& x) | 224 ∈∅< {x} {y} d with trio< o∅ (& x) |
222 ... | tri< a ¬b ¬c = a | 225 ... | tri< a ¬b ¬c = a |
223 ... | tri≈ ¬a b ¬c = ⊥-elim ( ∅< {x} {* y} (subst (λ k → odef x k ) (sym &iso) d ) ( ≡o∅→=od∅ (sym b) ) ) | 226 ... | tri≈ ¬a b ¬c = ⊥-elim ( ∅< {x} {* y} (subst (λ k → odef x k ) (sym &iso) d ) ( ≡o∅→=od∅ (sym b) ) ) |