Mercurial > hg > Members > kono > Proof > ZF-in-agda
view src/OD.agda @ 1489:0dbbae768c90 default tip
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 01 Jul 2024 23:04:17 +0900 |
parents | 623b2f792154 |
children |
line wrap: on
line source
{-# OPTIONS --cubical-compatible --safe #-} open import Level open import Ordinals import HODBase module OD {n : Level } (O : Ordinals {n} ) (HODAxiom : HODBase.ODAxiom O) where open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Data.Nat.Properties open import Data.Empty open import Data.Unit open import Relation.Nullary open import Relation.Binary hiding (_⇔_) open import Relation.Binary.Core hiding (_⇔_) open import logic import OrdUtil open import nat open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal -- open Ordinals.IsNext isNext open OrdUtil O -- Ordinal Definable Set open HODBase.HOD open HODBase.OD open _∧_ open _∨_ open Bool open HODBase._==_ open HODBase.ODAxiom HODAxiom HOD = HODBase.HOD O OD = HODBase.OD O Ords = HODBase.Ords O _==_ = HODBase._==_ O ==-refl = HODBase.==-refl O ==-trans = HODBase.==-trans O ==-sym = HODBase.==-sym O ⇔→== = HODBase.⇔→== O ==-Setoid = HODBase.==-Setoid O -- use like this open import Relation.Binary.Reasoning.Setoid ==-Setoid -- possible order restriction (required in the axiom of Omega ) -- postulate odAxiom-ho< : ODAxiom-ho< -- open ODAxiom-ho< odAxiom-ho< -- odmax minimality -- -- since we have ==→o≡ , so odmax have to be unique. We should have odmaxmin in HOD. -- We can calculate the minimum using sup but it is tedius. -- Only Select has non minimum odmax. -- We have the same problem on 'def' itself, but we leave it. odmaxmin : Set (suc n) odmaxmin = (y : HOD) (z : Ordinal) → ((x : Ordinal)→ def (od y) x → x o< z) → odmax y o< osuc z -- OD ⇔ Ordinal leads a contradiction, so we need bounded HOD ¬OD-order : ( & : OD → Ordinal ) → ( * : Ordinal → OD ) → ( { x y : OD } → def y ( & x ) → & x o< & y) → ⊥ ¬OD-order & * c<→o< = o≤> <-osuc (c<→o< {Ords} (lift tt) ) -- Ordinal in OD ( and ZFSet ) Transitive Set Ord : ( a : Ordinal ) → HOD Ord a = record { od = record { def = λ y → y o< a } ; odmax = a ; <odmax = lemma } where lemma : {x : Ordinal} → x o< a → x o< a lemma {x} lt = lt od∅ : HOD od∅ = Ord o∅ odef : HOD → Ordinal → Set n odef A x = def ( od A ) x _∋_ : ( a x : HOD ) → Set n _∋_ a x = odef a ( & x ) record AxiomOfChoice : Set (suc n) where field -- mimimul and x∋minimal is an Axiom of choice minimal : (x : HOD ) → ¬ (od x == od od∅ )→ HOD -- this should be ¬ (x =h= od∅ )→ ∃ ox → x ∋ Ord ox ( minimum of x ) x∋minimal : (x : HOD ) → ( ne : ¬ (od x == od od∅ ) ) → odef x ( & ( minimal x ne ) ) -- minimality (proved by ε-induction with LEM) minimal-1 : (x : HOD ) → ( ne : ¬ (od x == od od∅ ) ) → (y : HOD ) → ¬ ( odef (minimal x ne) (& y)) ∧ (odef x (& y) ) -- _c<_ : ( x a : HOD ) → Set n -- x c< a = a ∋ x d→∋ : ( a : HOD ) { x : Ordinal} → odef a x → a ∋ (* x) d→∋ a lt = subst (λ k → odef a k ) (sym &iso) lt -- odef-subst : {Z : HOD } {X : Ordinal }{z : HOD } {x : Ordinal }→ odef Z X → Z ≡ z → X ≡ x → odef z x -- odef-subst df refl refl = df otrans : {a x y : Ordinal } → odef (Ord a) x → odef (Ord x) y → odef (Ord a) y otrans x<a y<x = ordtrans y<x x<a -- If we have reverse of c<→o<, everything becomes Ordinal ∈→c<→HOD=Ord : ( o<→c< : {x y : Ordinal } → x o< y → odef (* y) x ) → {x : HOD } → od x == od (Ord (& x)) ∈→c<→HOD=Ord o<→c< {x} = record { eq→ = lemma1 ; eq← = lemma2 } where lemma1 : {y : Ordinal} → odef x y → odef (Ord (& x)) y lemma1 {y} lt = subst ( λ k → k o< & x ) &iso (c<→o< {* y} {x} (d→∋ x lt)) lemma2 : {y : Ordinal} → odef (Ord (& x)) y → odef x y lemma2 {y} lt = eq→ *iso (o<→c< {y} {& x} lt ) -- avoiding lv != Zero error orefl : { x : HOD } → { y : Ordinal } → & x ≡ y → & x ≡ y orefl refl = refl ==-iso : { x y : HOD } → od (* (& x)) == od (* (& y)) → od x == od y ==-iso {x} {y} eq = record { eq→ = λ {z} d → eq→ *iso ( eq→ eq (eq← *iso d) ) ; eq← = λ {z} d → eq→ *iso ( eq← eq (eq← *iso d) ) } -- =-iso : {x y : HOD } → (od x == od y) ≡ (od (* (& x)) == od y) -- =-iso {_} {y} = cong ( λ k → od k == od y ) ? -- (==-sym *iso) ord→== : { x y : HOD } → & x ≡ & y → od x == od y ord→== {x} {y} eq = ==-iso (lemma (& x) (& y) (orefl eq)) where lemma : ( ox oy : Ordinal ) → ox ≡ oy → od (* ox) == od (* oy) lemma ox ox refl = ==-refl o≡→== : { x y : Ordinal } → x ≡ y → od (* x) == od (* y) o≡→== {x} {.x} refl = ==-refl *≡*→≡ : { x y : Ordinal } → * x ≡ * y → x ≡ y *≡*→≡ eq = subst₂ (λ j k → j ≡ k ) &iso &iso ( cong (&) eq ) &≡&*& : {x : HOD} → & x ≡ & (* (& x)) &≡&*& = (==→o≡ (==-sym *iso) ) --- &≡&→≡ : { x y : HOD } → & x ≡ & y → x ≡ y -- &≡&→≡ eq = ? -- subst₂ (λ j k → j ≡ k ) *iso *iso ( cong (*) eq ) o∅==od∅ : od ( * (o∅ )) == od od∅ o∅==od∅ = lemma where lemma0 : {x : Ordinal} → odef (* o∅) x → odef od∅ x lemma0 {x} lt with c<→o< {* x} {* o∅} (subst (λ k → odef (* o∅) k ) (sym &iso) lt) ... | t = subst₂ (λ j k → j o< k ) &iso &iso t lemma1 : {x : Ordinal} → odef od∅ x → odef (* o∅) x lemma1 {x} lt = ⊥-elim (¬x<0 lt) lemma : od (* o∅) == od od∅ lemma = record { eq→ = lemma0 ; eq← = lemma1 } ord-od∅ : & (od∅ ) ≡ o∅ ord-od∅ = trans (==→o≡ (==-sym o∅==od∅)) &iso ≡o∅→=od∅ : {x : HOD} → & x ≡ o∅ → od x == od od∅ ≡o∅→=od∅ {x} eq = record { eq→ = λ {y} lt → ⊥-elim ( ¬x<0 {y} (subst₂ (λ j k → j o< k ) &iso eq ( c<→o< {* y} {x} (d→∋ x lt)))) ; eq← = λ {y} lt → ⊥-elim ( ¬x<0 lt )} =od∅→≡o∅ : {x : HOD} → od x == od od∅ → & x ≡ o∅ =od∅→≡o∅ {x} eq = trans (==→o≡ {x} {od∅} eq) ord-od∅ ≡od∅→=od∅ : {x : HOD} → x ≡ od∅ → od x == od od∅ ≡od∅→=od∅ {x} eq = ≡o∅→=od∅ (subst (λ k → & x ≡ k ) ord-od∅ ( cong & eq ) ) ∅0 : record { def = λ x → Lift n ⊥ } == od od∅ eq→ ∅0 {w} (lift ()) eq← ∅0 {w} lt = lift (¬x<0 lt) ∅< : { x y : HOD } → odef x (& y ) → ¬ ( od x == od od∅ ) ∅< {x} {y} d eq with eq→ (==-trans eq (==-sym ∅0) ) d ∅< {x} {y} d eq | lift () ¬x∋y→x≡od∅ : { x : HOD } → ({y : Ordinal } → ¬ odef x y ) → (& x) ≡ & od∅ ¬x∋y→x≡od∅ {x} nxy = ==→o≡ record { eq→ = λ {y} lt → ⊥-elim (nxy lt) ; eq← = λ {y} lt → ⊥-elim (¬x<0 lt) } 0<P→ne : { x : HOD } → o∅ o< & x → ¬ ( od x == od od∅ ) 0<P→ne {x} 0<x eq = ⊥-elim ( o<¬≡ (sym (=od∅→≡o∅ eq)) 0<x ) ∈∅< : { x : HOD } {y : Ordinal } → odef x y → o∅ o< (& x) ∈∅< {x} {y} d with trio< o∅ (& x) ... | tri< a ¬b ¬c = a ... | tri≈ ¬a b ¬c = ⊥-elim ( ∅< {x} {* y} (subst (λ k → odef x k ) (sym &iso) d ) ( ≡o∅→=od∅ (sym b) ) ) ... | tri> ¬a ¬b c = ⊥-elim ( ¬x<0 c ) ∅6 : { x : HOD } → ¬ ( x ∋ x ) -- no Russel paradox ∅6 {x} x∋x = o<¬≡ refl ( c<→o< {x} {x} x∋x ) odef-iso : {A B : HOD } {x y : Ordinal } → x ≡ y → (odef A y → odef B y) → odef A x → odef B x odef-iso refl t = t is-o∅ : ( x : Ordinal ) → Dec ( x ≡ o∅ ) is-o∅ x with trio< x o∅ is-o∅ x | tri< a ¬b ¬c = no ¬b is-o∅ x | tri≈ ¬a b ¬c = yes b is-o∅ x | tri> ¬a ¬b c = no ¬b odef< : {b : Ordinal } { A : HOD } → odef A b → b o< & A odef< {b} {A} ab = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) ab)) odef∧< : {A : HOD } {y : Ordinal} {n : Level } → {P : Set n} → odef A y ∧ P → y o< & A odef∧< {A } {y} p = subst (λ k → k o< & A) &iso ( c<→o< (subst (λ k → odef A k ) (sym &iso ) (proj1 p ))) -- the pair _,_ : HOD → HOD → HOD x , y = record { od = record { def = λ t → (t ≡ & x ) ∨ ( t ≡ & y ) } ; odmax = omax (& x) (& y) ; <odmax = lemma } where lemma : {t : Ordinal} → (t ≡ & x) ∨ (t ≡ & y) → t o< omax (& x) (& y) lemma {t} (case1 refl) = omax-x _ _ lemma {t} (case2 refl) = omax-y _ _ pair<y : {x y : HOD } → y ∋ x → & (x , x) o< osuc (& y) pair<y {x} {y} y∋x = ⊆→o≤ lemma where lemma : {z : Ordinal} → def (od (x , x)) z → def (od y) z lemma (case1 refl) = y∋x lemma (case2 refl) = y∋x -- another possible restriction. We require no minimality on odmax, so it may arbitrary larger. odmax<& : { x y : HOD } → x ∋ y → Set n odmax<& {x} {y} x∋y = odmax x o< & x in-codomain : (X : HOD ) → ( ψ : HOD → HOD ) → OD in-codomain X ψ = record { def = λ x → ¬ ( (y : Ordinal ) → ¬ ( odef X y ∧ ( x ≡ & (ψ (* y ))))) } _∩_ : ( A B : HOD ) → HOD A ∩ B = record { od = record { def = λ x → odef A x ∧ odef B x } ; odmax = omin (odmax A) (odmax B) ; <odmax = λ y → min1 (<odmax A (proj1 y)) (<odmax B (proj2 y))} _⊆_ : ( A B : HOD) → Set n _⊆_ A B = { x : Ordinal } → odef A x → odef B x infixr 220 _⊆_ -- if we have & (x , x) ≡ osuc (& x), ⊆→o≤ → c<→o< ⊆→o≤→c<→o< : ({x : HOD} → & (x , x) ≡ osuc (& x) ) → ({y z : HOD } → ({x : Ordinal} → def (od y) x → def (od z) x ) → & y o< osuc (& z) ) → {x y : HOD } → def (od y) ( & x ) → & x o< & y ⊆→o≤→c<→o< peq ⊆→o≤ {x} {y} y∋x with trio< (& x) (& y) ⊆→o≤→c<→o< peq ⊆→o≤ {x} {y} y∋x | tri< a ¬b ¬c = a ⊆→o≤→c<→o< peq ⊆→o≤ {x} {y} y∋x | tri≈ ¬a b ¬c = ⊥-elim ( o<¬≡ (peq {x}) (pair<y (eq← (ord→== b) y∋x ) ) ) ⊆→o≤→c<→o< peq ⊆→o≤ {x} {y} y∋x | tri> ¬a ¬b c = ⊥-elim ( o<> (⊆→o≤ {x , x} {y} y⊆x,x ) lemma1 ) where lemma : {z : Ordinal} → (z ≡ & x) ∨ (z ≡ & x) → & x ≡ z lemma (case1 refl) = refl lemma (case2 refl) = refl y⊆x,x : {z : Ordinal} → def (od (x , x)) z → def (od y) z y⊆x,x {z} lt = subst (λ k → def (od y) k ) (lemma lt) y∋x lemma1 : osuc (& y) o< & (x , x) lemma1 = subst (λ k → osuc (& y) o< k ) (sym (peq {x})) (osucc c ) ε-induction : { ψ : HOD → Set (suc n)} → ( {x : HOD } → ({ y : HOD } → x ∋ y → ψ y ) → ψ x ) → (x : HOD ) → ψ x ε-induction {ψ} ind x = ε-induction-hod _ {& x} <-osuc x <-osuc where induction2 : (x₁ : Ordinal) → ((y : Ordinal) → y o< x₁ → (y₁ : HOD) → & y₁ o< osuc y → ψ y₁) → (y : HOD) → & y o< osuc x₁ → ψ y induction2 x prev y y≤x = ind (λ {y₁} lt → prev (& y₁) (lemma1 y₁ lt) y₁ <-osuc ) where lemma1 : (y₁ : HOD) → y ∋ y₁ → & y₁ o< x lemma1 y₁ lt with trio< (& y₁) x ... | tri< a ¬b ¬c = a ... | tri> ¬a ¬b c = ⊥-elim (o≤> (ordtrans (c<→o< lt) y≤x) c ) ... | tri≈ ¬a b ¬c with osuc-≡< y≤x ... | case1 y=x = subst (λ k → & y₁ o< k ) y=x (c<→o< lt) ... | case2 y<x = ⊥-elim ( o<¬≡ b ( (ordtrans (c<→o< lt) y<x) )) ε-induction-hod : (ox : Ordinal) { oy : Ordinal } → oy o< ox → (y : HOD) → & y o< osuc oy → ψ y ε-induction-hod ox {oy} lt = TransFinite {λ oy → (y : HOD) → & y o< osuc oy → ψ y} induction2 oy -- we cannot prove this... -- ε-induction0 : { ψ : HOD → Set n} -- → ( {x : HOD } → ({ y : HOD } → x ∋ y → ψ y ) → ψ x ) -- → (x : HOD ) → ψ x -- Open supreme upper bound leads a contradition, so we use domain restriction on sup ¬open-sup : ( sup-o : (Ordinal → Ordinal ) → Ordinal) → ((ψ : Ordinal → Ordinal ) → (x : Ordinal) → ψ x o< sup-o ψ ) → ⊥ ¬open-sup sup-o sup-o< = o<> <-osuc (sup-o< next-ord (sup-o next-ord)) where next-ord : Ordinal → Ordinal next-ord x = osuc x _=h=_ : (x y : HOD) → Set n x =h= y = od x == od y record Own (A : HOD) (x : Ordinal) : Set n where field owner : Ordinal ao : odef A owner ox : odef (* owner) x Union : HOD → HOD Union U = record { od = record { def = λ x → Own U x } ; odmax = osuc (& U) ; <odmax = umax } where umax : {y : Ordinal} → Own U y → y o< osuc (& U) umax {y} uy = o<→≤ ( ordtrans (odef< (Own.ox uy)) (subst (λ k → k o< & U) (sym &iso) umax1) ) where umax1 : Own.owner uy o< & U umax1 = odef< (Own.ao uy) union→ : (X z u : HOD) → (X ∋ u) ∧ (u ∋ z) → Union X ∋ z union→ X z u xx = record { owner = & u ; ao = proj1 xx ; ox = eq← *iso (proj2 xx) } union← : (X z : HOD) (X∋z : Union X ∋ z) → ¬ ( (u : HOD ) → ¬ ((X ∋ u) ∧ (u ∋ z ))) union← X z UX∋z not = ⊥-elim ( not (* (Own.owner UX∋z)) ⟪ subst (λ k → odef X k) (sym &iso) ( Own.ao UX∋z) , Own.ox UX∋z ⟫ ) -- -- -- ψiso : {ψ : HOD → Set n} {x y : HOD } → ψ x → x ≡ y → ψ y ψiso {ψ} t refl = t record RCod (COD : HOD) (ψ : HOD → HOD) : Set (suc n) where field ≤COD : ∀ {x : HOD } → ψ x ⊆ COD ψ-eq : ∀ {x y : HOD } → od x == od y → ψ x =h= ψ y record Replaced (A : HOD) (ψ : Ordinal → Ordinal ) (x : Ordinal ) : Set n where field z : Ordinal az : odef A z x=ψz : x ≡ ψ z Replace : (D : HOD) → (ψ : HOD → HOD) → {C : HOD} → RCod C ψ → HOD Replace X ψ {C} rc = record { od = record { def = λ x → Replaced X (λ z → & (ψ (* z))) x } ; odmax = osuc (& C) ; <odmax = rmax< } where rmax< : {y : Ordinal} → Replaced X (λ z → & (ψ (* z))) y → y o< osuc (& C) rmax< {y} lt = subst (λ k → k o< osuc (& C)) r01 ( ⊆→o≤ (RCod.≤COD rc) ) where r01 : & (ψ ( * (Replaced.z lt ) )) ≡ y r01 = sym (Replaced.x=ψz lt ) replacement← : {ψ : HOD → HOD} (X x : HOD) → X ∋ x → {C : HOD} → (rc : RCod C ψ) → Replace X ψ rc ∋ ψ x replacement← {ψ} X x lt {C} rc = record { z = & x ; az = lt ; x=ψz = ==→o≡ (RCod.ψ-eq rc (==-sym *iso) ) } replacement→ : {ψ : HOD → HOD} (X x : HOD) → {C : HOD} → (rc : RCod C ψ ) → (lt : Replace X ψ rc ∋ x) → ¬ ( (y : HOD) → ¬ (x =h= ψ y)) replacement→ {ψ} X x {C} rc lt eq = eq (* (Replaced.z lt)) (ord→== (Replaced.x=ψz lt)) -- -- If we have LEM, Replace' is equivalent to Replace -- -- we should remove Replace' and Replace'-iso1? -- the reason why we need Replace' is we cannot have Dec on X ∋ x without LEM. record RXCod (X COD : HOD) (ψ : (x : HOD) → X ∋ x → HOD) : Set (suc n) where field ≤COD : ∀ {x : HOD } → (lt : X ∋ x) → ψ x lt ⊆ COD ψ-eq : ∀ {x : HOD } → (lt lt1 : X ∋ x) → ψ x lt =h= ψ x lt1 record Replaced1 (A : HOD) (ψ : (x : Ordinal ) → odef A x → Ordinal ) (x : Ordinal ) : Set n where field z : Ordinal az : odef A z x=ψz : x ≡ ψ z az Replace' : (X : HOD) → (ψ : (x : HOD) → X ∋ x → HOD) → {C : HOD} → RXCod X C ψ → HOD Replace' X ψ {C} rc = record { od = record { def = λ x → Replaced1 X (λ z xz → & (ψ (* z) (subst (λ k → odef X k) (sym &iso) xz) )) x } ; odmax = osuc (& C) ; <odmax = rmax< } where rmax< : {y : Ordinal} → Replaced1 X (λ z xz → & (ψ (* z) (subst (λ k → odef X k) (sym &iso) xz) )) y → y o< osuc (& C) rmax< {y} lt = subst (λ k → k o< osuc (& C)) r01 ( ⊆→o≤ (RXCod.≤COD rc (subst (λ k → odef X k) (sym &iso) (Replaced1.az lt) ))) where r01 : & (ψ ( * (Replaced1.z lt ) ) (subst (λ k → odef X k) (sym &iso) (Replaced1.az lt) )) ≡ y r01 = sym (Replaced1.x=ψz lt ) cod-conv : (X : HOD) → (ψ : (x : HOD) → X ∋ x → HOD) → {C : HOD} → (rc : RXCod X C ψ ) → RXCod (* (& X)) C (λ y xy → ψ y (eq→ *iso xy)) cod-conv X ψ {C} rc = record { ≤COD = λ {x} lt → RXCod.≤COD rc (eq→ *iso lt ) ; ψ-eq = λ {x} lt lt1 → RXCod.ψ-eq rc (eq→ *iso lt) (eq→ *iso lt1) } Replace'-iso : {X Y : HOD} → {fx : (x : HOD) → X ∋ x → HOD} {fy : (x : HOD) → Y ∋ x → HOD} → {CX : HOD} → (rcx : RXCod X CX fx ) → {CY : HOD} → (rcy : RXCod Y CY fy ) → X ≡ Y → ( (x : HOD) → (xx : X ∋ x ) → (yy : Y ∋ x ) → fx _ xx ≡ fy _ yy ) → od (Replace' X fx rcx ) == od (Replace' Y fy rcy) Replace'-iso {X} {X} {fx} {fy} _ _ refl eq = record { eq→ = ri0 ; eq← = ri1 } where ri0 : {x : Ordinal} → Replaced1 X (λ z xz → & (fx (* z) (subst (odef X) (sym &iso) xz))) x → Replaced1 X (λ z xz → & (fy (* z) (subst (odef X) (sym &iso) xz))) x ri0 {x} record { z = z ; az = az ; x=ψz = x=ψz } = record { z = z ; az = az ; x=ψz = trans x=ψz (cong (&) ( eq _ xz xz )) } where xz : X ∋ * z xz = subst (λ k → odef X k ) (sym &iso) az ri1 : {x : Ordinal} → Replaced1 X (λ z xz → & (fy (* z) (subst (odef X) (sym &iso) xz))) x → Replaced1 X (λ z xz → & (fx (* z) (subst (odef X) (sym &iso) xz))) x ri1 {x} record { z = z ; az = az ; x=ψz = x=ψz } = record { z = z ; az = az ; x=ψz = trans x=ψz (cong (&) (sym ( eq _ xz xz ))) } where xz : X ∋ * z xz = subst (λ k → odef X k ) (sym &iso) az Replace'-iso1 : (X : HOD) → (ψ : (x : HOD) → X ∋ x → HOD) → {C : HOD} → (rc : RXCod X C ψ ) → od (Replace' (* (& X)) (λ y xy → ψ y (eq→ *iso xy) ) (cod-conv X ψ rc)) == od ( Replace' X ( λ y xy → ψ y xy ) rc ) Replace'-iso1 X ψ rc = record { eq→ = ri0 ; eq← = ri1 } where ri0 : {x : Ordinal} → Replaced1 (* (& X)) (λ z xz → & (ψ (* z) (eq→ *iso (subst (odef (* (& X))) (sym &iso) xz)))) x → Replaced1 X (λ z xz → & (ψ (* z) (subst (odef X) (sym &iso) xz))) x ri0 {x} record { z = z ; az = az ; x=ψz = x=ψz } = record { z = z ; az = eq→ *iso az ; x=ψz = trans x=ψz (==→o≡ (RXCod.ψ-eq rc _ _ )) } ri1 : {x : Ordinal} → Replaced1 X (λ z xz → & (ψ (* z) (subst (odef X) (sym &iso) xz))) x → Replaced1 (* (& X)) (λ z xz → & (ψ (* z) (eq→ *iso (subst (odef (* (& X))) (sym &iso) xz)))) x ri1 {x} record { z = z ; az = az ; x=ψz = x=ψz } = record { z = z ; az = eq← *iso az ; x=ψz = trans x=ψz (==→o≡ (RXCod.ψ-eq rc _ _ )) } _∈_ : ( A B : HOD ) → Set n A ∈ B = B ∋ A Power : HOD → HOD Power A = record { od = record { def = λ x → ( z : Ordinal) → odef (* x) z → odef A z } ; odmax = osuc (& A) ; <odmax = p00 } where p00 : {y : Ordinal} → ((z : Ordinal) → odef (* y) z → odef A z) → y o< osuc (& A) p00 {y} y⊆A = p01 where p01 : y o≤ & A p01 = subst (λ k → k o≤ & A) &iso ( ⊆→o≤ (λ {x} yx → y⊆A x yx )) power→ : ( A t : HOD) → Power A ∋ t → {x : HOD} → t ∋ x → A ∋ x power→ A t P∋t {x} t∋x = P∋t (& x) (eq← *iso t∋x ) power← : (A t : HOD) → ({x : HOD} → (t ∋ x → A ∋ x)) → Power A ∋ t power← A t t⊆A z xz = subst (λ k → odef A k ) &iso ( t⊆A (subst (λ k → odef t k) (sym &iso) (eq→ *iso xz ))) Power∋∅ : {S : HOD} → odef (Power S) o∅ Power∋∅ z xz = ⊥-elim (¬x<0 ( eq→ o∅==od∅ xz) ) Intersection : (X : HOD ) → HOD -- ∩ X Intersection X = record { od = record { def = λ x → (x o≤ & X ) ∧ ( {y : Ordinal} → odef X y → odef (* y) x )} ; odmax = osuc (& X) ; <odmax = λ lt → proj1 lt } empty : (x : HOD ) → ¬ (od∅ ∋ x) empty x = ¬x<0 -- {_} : ZFSet → ZFSet -- { x } = ( x , x ) -- better to use (x , x) directly data Omega-d : ( x : Ordinal ) → Set n where iφ : Omega-d o∅ isuc : {x : Ordinal } → Omega-d x → Omega-d (& ( Union (* x , (* x , * x ) ) )) -- ω can be diverged in our case, since we have no restriction on the corresponding ordinal of a pair. -- We simply assumes Omega-d y has a maximum. -- -- This means that many of OD may not be HODs because of the & mapping divergence. -- We should have some axioms to prevent this . -- Omega-od : OD Omega-od = record { def = λ x → Omega-d x } o∅<x : {x : Ordinal} → o∅ o≤ x o∅<x {x} with trio< o∅ x ... | tri< a ¬b ¬c = o<→≤ a ... | tri≈ ¬a b ¬c = o≤-refl0 b ... | tri> ¬a ¬b c = ⊥-elim (¬x<0 c) ¬0=ux : {x : HOD} → ¬ o∅ ≡ & (Union ( x , ( x , x))) ¬0=ux {x} eq = ⊥-elim ( o<¬≡ eq (ordtrans≤-< o∅<x (subst (λ k → k o< & (Union (x , (x , x)))) &iso (c<→o< lemma ) ))) where lemma : Own (x , (x , x)) (& ( * (& x ))) lemma = record { owner = _ ; ao = case2 refl ; ox = eq← *iso (subst (λ k → odef (x , x) k) (sym &iso) (case1 refl)) } ux-2cases : {x y : HOD } → Union ( x , ( x , x)) ∋ y → ( & x ≡ & y ) ∨ ( x ∋ y ) ux-2cases {x} {y} record { owner = owner ; ao = (case1 eq) ; ox = ox } = case2 (eq→ *iso (subst (λ k → odef k (& y)) (cong (*) eq) ox )) ux-2cases {x} {y} record { owner = owner ; ao = (case2 eq) ; ox = ox } with eq→ *iso (subst (λ k → odef k (& y)) (cong (*) eq) ox) ... | case1 y=x = case1 (sym y=x) ... | case2 y=x = case1 (sym y=x) ux-transitve : {x y : HOD} → x ∋ y → Union ( x , ( x , x)) ∋ y ux-transitve {x} {y} ox = record { owner = _ ; ao = case1 refl ; ox = eq← *iso ox } -- -- Possible Ordinal Limit -- -- our Ordinals is greater than Union ( x , ( x , x)) transitive closure -- record ODAxiom-ho< : Set (suc n) where field omega : Ordinal ho< : {x : Ordinal } → Omega-d x → x o< omega -- postulate -- odaxion-ho< : ODAxiom-ho< -- open ODAxiom-ho< odaxion-ho< Omega : ODAxiom-ho< → HOD Omega ho< = record { od = record { def = λ x → Omega-d x } ; odmax = ODAxiom-ho<.omega ho< ; <odmax = λ lt → ODAxiom-ho<.ho< ho< lt } infinity∅ : (ho< : ODAxiom-ho<) → Omega ho< ∋ od∅ infinity∅ ho< = subst (λ k → odef (Omega ho<) k ) lemma iφ where lemma : o∅ ≡ & od∅ lemma = sym ord-od∅ Omega-iso : {x : HOD } → od (Union (* (& x) , (* (& x) , * (& x)))) == od (Union (x , (x , x))) Omega-iso {x} = record { eq→ = lemma2 ; eq← = lemma3 } where lemma2 : {y : Ordinal} → Own (* (& x) , (* (& x) , * (& x))) y → Own (x , (x , x)) y lemma2 {y} record { owner = owner ; ao = case1 ao ; ox = ox } = record { owner = owner ; ao = case1 lemma4 ; ox = ox } where lemma4 : owner ≡ & x lemma4 = trans ao ( ==→o≡ *iso ) lemma2 {y} record { owner = owner ; ao = case2 ao ; ox = ox } = record { owner = owner ; ao = case2 lemma4 ; ox = ox } where lemma4 : owner ≡ & (x , x) lemma4 = trans ao ( ==→o≡ record { eq→ = lemma5 _ ; eq← = lemma6 _ } ) where lemma5 : (x₁ : Ordinal) → (x₁ ≡ & (* (& x))) ∨ (x₁ ≡ & (* (& x))) → (x₁ ≡ & x) ∨ (x₁ ≡ & x) lemma5 y (case1 eq) = case1 (trans eq (sym (==→o≡ (==-sym *iso) ) )) lemma5 y (case2 eq) = case1 (trans eq (sym (==→o≡ (==-sym *iso) ) )) lemma6 : (x₁ : Ordinal) → (x₁ ≡ & x) ∨ (x₁ ≡ & x) → (x₁ ≡ & (* (& x))) ∨ (x₁ ≡ & (* (& x))) lemma6 y (case1 eq) = case1 (trans eq ((==→o≡ (==-sym *iso) ) )) lemma6 y (case2 eq) = case1 (trans eq ((==→o≡ (==-sym *iso) ) )) lemma3 : {y : Ordinal} → Own (x , (x , x)) y → Own (* (& x) , (* (& x) , * (& x))) y lemma3 {y} record { owner = owner ; ao = (case1 ao) ; ox = ox } = record { owner = owner ; ao = case1 (trans ao (==→o≡ (==-sym *iso) )) ; ox = ox } lemma3 {y} record { owner = owner ; ao = (case2 ao) ; ox = ox } = record { owner = owner ; ao = case2 (trans ao (==→o≡ record { eq→ = lemma5 _ ; eq← = lemma4 _ })) ; ox = ox } where lemma4 : (x₁ : Ordinal) → (x₁ ≡ & (* (& x))) ∨ (x₁ ≡ & (* (& x))) → (x₁ ≡ & x) ∨ (x₁ ≡ & x) lemma4 y (case1 eq) = case1 ( trans eq (sym (==→o≡ (==-sym *iso) ) )) lemma4 y (case2 eq) = case1 ( trans eq (sym (==→o≡ (==-sym *iso) ) )) lemma5 : (x₁ : Ordinal) → (x₁ ≡ & x) ∨ (x₁ ≡ & x) → (x₁ ≡ & (* (& x))) ∨ (x₁ ≡ & (* (& x))) lemma5 y (case1 eq) = case1 ( trans eq ((==→o≡ (==-sym *iso) ) )) lemma5 y (case2 eq) = case1 ( trans eq ((==→o≡ (==-sym *iso) ) )) infinity : (ho< : ODAxiom-ho<) → (x : HOD) → Omega ho< ∋ x → Omega ho< ∋ Union (x , (x , x )) infinity ho< x lt = subst (λ k → odef (Omega ho<) k ) (==→o≡ Omega-iso) (isuc {& x} lt) pair→ : ( x y t : HOD ) → (x , y) ∋ t → ( t =h= x ) ∨ ( t =h= y ) pair→ x y t (case1 t≡x ) = case1 ( ord→== t≡x ) pair→ x y t (case2 t≡y ) = case2 ( ord→== t≡y ) pair← : ( x y t : HOD ) → ( t =h= x ) ∨ ( t =h= y ) → (x , y) ∋ t pair← x y t (case1 t=h=x) = case1 (==→o≡ t=h=x) pair← x y t (case2 t=h=y) = case2 (==→o≡ t=h=y) pair-iso : {x y : HOD } → (* (& x) , * (& y)) =h= (x , y) pair-iso {x} {y} = record { eq→ = lem01 ; eq← = lem00 } where lem00 : {z : Ordinal} → (z ≡ & x) ∨ (z ≡ & y) → (z ≡ & (* (& x))) ∨ (z ≡ & (* (& y))) lem00 {z} (case1 z=x) = case1 (trans z=x ((==→o≡ (==-sym *iso) ) )) lem00 {z} (case2 z=y) = case2 (trans z=y ((==→o≡ (==-sym *iso) ) )) lem01 : {z : Ordinal} → (z ≡ & (* (& x))) ∨ (z ≡ & (* (& y))) → (z ≡ & x) ∨ (z ≡ & y) lem01 {z} (case1 z=x) = case1 (trans z=x (sym (==→o≡ (==-sym *iso) ) )) lem01 {z} (case2 z=y) = case2 (trans z=y (sym (==→o≡ (==-sym *iso) ) )) o<→c< : {x y : Ordinal } → x o< y → (Ord x) ⊆ (Ord y) o<→c< lt {z} ox = ordtrans ox lt ⊆→o< : {x y : Ordinal } → (Ord x) ⊆ (Ord y) → x o< osuc y ⊆→o< {x} {y} lt with trio< x y ⊆→o< {x} {y} lt | tri< a ¬b ¬c = ordtrans a <-osuc ⊆→o< {x} {y} lt | tri≈ ¬a b ¬c = subst ( λ k → k o< osuc y) (sym b) <-osuc ⊆→o< {x} {y} lt | tri> ¬a ¬b c with lt (o<-subst c (sym &iso) refl ) ... | ttt = ⊥-elim ( o<¬≡ refl (o<-subst ttt &iso refl )) open import zf Select : (X : HOD ) → (ψ : (x : HOD ) → Set n ) ( zψ : ZPred HOD _∋_ _=h=_ ψ ) → HOD Select X ψ zψ = record { od = record { def = λ x → ( odef X x ∧ ψ ( * x )) } ; odmax = odmax X ; <odmax = λ y → <odmax X (proj1 y) } selection : {ψ : HOD → Set n} → { zψ : ZPred HOD _∋_ _=h=_ ψ } → { X y : HOD} → ((X ∋ y) ∧ ψ y) ⇔ (Select X ψ zψ ∋ y) selection {ψ} {zψ} {X} {y} = ⟪ ( λ cond → ⟪ proj1 cond , peq (proj2 cond) (==-sym *iso) ⟫ ) , ( λ select → ⟪ proj1 select , peq (proj2 select) *iso ⟫ ) ⟫ where peq : {x y : HOD } → ψ x → od x == od y → ψ y peq {x} {y} fx eq = proj1 (ZPred.ψ-cong zψ x y eq) fx selection-in-domain : {ψ : HOD → Set n} { zψ : ZPred HOD _∋_ _=h=_ ψ } {X y : HOD} → Select X ψ zψ ∋ y → X ∋ y selection-in-domain {ψ} {zψ} {X} {y} lt = proj1 ((proj2 (selection {ψ} {zψ} {X} )) lt) --- --- Power Set --- --- First consider ordinals in HOD --- --- A ∩ x = record { def = λ y → odef A y ∧ odef x y } subset of A -- -- ∩-≡ : { a b : HOD } → ({x : HOD } → (a ∋ x → b ∋ x)) → a =h= ( b ∩ a ) ∩-≡ {a} {b} inc = record { eq→ = λ {x} x<a → ⟪ (subst (λ k → odef b k ) &iso (inc (d→∋ a x<a))) , x<a ⟫ ; eq← = λ {x} x<a∩b → proj2 x<a∩b } extensionality0 : {A B : HOD } → ((z : HOD) → (A ∋ z) ⇔ (B ∋ z)) → A =h= B eq→ (extensionality0 {A} {B} eq ) {x} d = odef-iso {A} {B} (sym &iso) (proj1 (eq (* x))) d eq← (extensionality0 {A} {B} eq ) {x} d = odef-iso {B} {A} (sym &iso) (proj2 (eq (* x))) d extensionality : {A B w : HOD } → ((z : HOD ) → (A ∋ z) ⇔ (B ∋ z)) → (w ∋ A) ⇔ (w ∋ B) proj1 (extensionality {A} {B} {w} eq ) d = subst (λ k → odef w k) (==→o≡ (extensionality0 {A} {B} eq)) d proj2 (extensionality {A} {B} {w} eq ) d = subst (λ k → odef w k) (sym (==→o≡ (extensionality0 {A} {B} eq))) d ZFReplace : HOD → ( ψ : HOD → HOD) → ( ZFunc HOD _∋_ _=h=_ ψ )→ HOD ZFReplace X ψ zfψ = record { od = record { def = λ x → Replaced X (λ z → & (ψ (* z))) x } ; odmax = & (ZFunc.cod zfψ) ; <odmax = rmax< } where rmax< : {y : Ordinal} → Replaced X (λ z → & (ψ (* z))) y → y o< & (ZFunc.cod zfψ) rmax< {y} lt = subst (λ k → k o< & (ZFunc.cod zfψ) ) r01 (c<→o< (ZFunc.cod∋ψ zfψ (* (Replaced.z lt)) ) ) where r01 : & (ψ ( * (Replaced.z lt ) )) ≡ y r01 = sym (Replaced.x=ψz lt ) zf-replacement← : {ψ : HOD → HOD} → {zfψ : ZFunc HOD _∋_ _=h=_ ψ } → (X x : HOD) → X ∋ x → ZFReplace X ψ zfψ ∋ ψ x zf-replacement← {ψ} {zfψ} X x lt = record { z = & x ; az = lt ; x=ψz = ==→o≡ (ZFunc.ψ-cong zfψ _ _ (==-sym *iso) ) } zf-replacement→ : {ψ : HOD → HOD} → {zfψ : ZFunc HOD _∋_ _=h=_ ψ } → (X x : HOD) → (lt : ZFReplace X ψ zfψ ∋ x) → ¬ ( (y : HOD) → ¬ (x =h= ψ y)) zf-replacement→ {ψ} {zfψ} X x lt eq = eq (* (Replaced.z lt)) (ord→== (Replaced.x=ψz lt)) isZF : (ho< : ODAxiom-ho< ) → IsZF HOD _∋_ _=h=_ od∅ _,_ Union Power Select ZFReplace (Omega ho<) isZF ho< = record { isEquivalence = record { refl = ==-refl ; sym = ==-sym; trans = ==-trans } ; pair→ = pair→ ; pair← = pair← ; union→ = union→ ; union← = union← ; empty = empty ; power→ = power→ ; power← = power← ; extensionality = λ {A} {B} {w} → extensionality {A} {B} {w} ; ε-induction = ε-induction ; infinity∅ = infinity∅ ho< ; infinity = infinity ho< ; selection = λ {X} {ψ} {zψ} {y} → selection {X} {ψ} {zψ} {y} ; replacement← = λ {ψ} {zfψ} → zf-replacement← {ψ} {zfψ} ; replacement→ = λ {ψ} {zfψ} → zf-replacement→ {ψ} {zfψ} } HOD→ZF : ODAxiom-ho< → ZF HOD→ZF ho< = record { ZFSet = HOD ; _∋_ = _∋_ ; _≈_ = _=h=_ ; ∅ = od∅ ; _,_ = _,_ ; Union = Union ; Power = Power ; Select = Select ; Replace = ZFReplace ; infinite = Omega ho< ; isZF = isZF ho< }