Mercurial > hg > Members > kono > Proof > ZF-in-agda
comparison ordinal.agda @ 324:fbabb20f222e
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 04 Jul 2020 18:18:17 +0900 |
parents | 6f10c47e4e7a |
children | 1a54dbe1ea4c |
comparison
equal
deleted
inserted
replaced
323:e228e96965f0 | 324:fbabb20f222e |
---|---|
209 C-Ordinal {n} = record { | 209 C-Ordinal {n} = record { |
210 ord = Ordinal {suc n} | 210 ord = Ordinal {suc n} |
211 ; o∅ = o∅ | 211 ; o∅ = o∅ |
212 ; osuc = osuc | 212 ; osuc = osuc |
213 ; _o<_ = _o<_ | 213 ; _o<_ = _o<_ |
214 ; next = ? | |
214 ; isOrdinal = record { | 215 ; isOrdinal = record { |
215 Otrans = ordtrans | 216 Otrans = ordtrans |
216 ; OTri = trio< | 217 ; OTri = trio< |
217 ; ¬x<0 = ¬x<0 | 218 ; ¬x<0 = ¬x<0 |
218 ; <-osuc = <-osuc | 219 ; <-osuc = <-osuc |
219 ; osuc-≡< = osuc-≡< | 220 ; osuc-≡< = osuc-≡< |
220 ; TransFinite = TransFinite1 | 221 ; TransFinite = TransFinite1 |
222 ; is-limit = ? | |
223 ; next-limit = ? | |
221 } | 224 } |
222 } where | 225 } where |
223 ord1 : Set (suc n) | 226 ord1 : Set (suc n) |
224 ord1 = Ordinal {suc n} | 227 ord1 = Ordinal {suc n} |
225 TransFinite1 : { ψ : ord1 → Set (suc (suc n)) } | 228 TransFinite1 : { ψ : ord1 → Set (suc n) } |
226 → ( (x : ord1) → ( (y : ord1 ) → y o< x → ψ y ) → ψ x ) | 229 → ( (x : ord1) → ( (y : ord1 ) → y o< x → ψ y ) → ψ x ) |
227 → ∀ (x : ord1) → ψ x | 230 → ∀ (x : ord1) → ψ x |
228 TransFinite1 {ψ} lt x = TransFinite {n} {suc (suc n)} {ψ} caseΦ caseOSuc x where | 231 TransFinite1 {ψ} lt x = TransFinite {n} {suc n} {ψ} caseΦ caseOSuc x where |
229 caseΦ : (lx : Nat) → ((x₁ : Ordinal) → x₁ o< ordinal lx (Φ lx) → ψ x₁) → | 232 caseΦ : (lx : Nat) → ((x₁ : Ordinal) → x₁ o< ordinal lx (Φ lx) → ψ x₁) → |
230 ψ (record { lv = lx ; ord = Φ lx }) | 233 ψ (record { lv = lx ; ord = Φ lx }) |
231 caseΦ lx prev = lt (ordinal lx (Φ lx) ) prev | 234 caseΦ lx prev = lt (ordinal lx (Φ lx) ) prev |
232 caseOSuc : (lx : Nat) (x₁ : OrdinalD lx) → ((y : Ordinal) → y o< ordinal lx (OSuc lx x₁) → ψ y) → | 235 caseOSuc : (lx : Nat) (x₁ : OrdinalD lx) → ((y : Ordinal) → y o< ordinal lx (OSuc lx x₁) → ψ y) → |
233 ψ (record { lv = lx ; ord = OSuc lx x₁ }) | 236 ψ (record { lv = lx ; ord = OSuc lx x₁ }) |