Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff ordinal.agda @ 324:fbabb20f222e
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 04 Jul 2020 18:18:17 +0900 |
parents | 6f10c47e4e7a |
children | 1a54dbe1ea4c |
line wrap: on
line diff
--- a/ordinal.agda Sat Jul 04 12:53:40 2020 +0900 +++ b/ordinal.agda Sat Jul 04 18:18:17 2020 +0900 @@ -211,6 +211,7 @@ ; o∅ = o∅ ; osuc = osuc ; _o<_ = _o<_ + ; next = ? ; isOrdinal = record { Otrans = ordtrans ; OTri = trio< @@ -218,14 +219,16 @@ ; <-osuc = <-osuc ; osuc-≡< = osuc-≡< ; TransFinite = TransFinite1 + ; is-limit = ? + ; next-limit = ? } } where ord1 : Set (suc n) ord1 = Ordinal {suc n} - TransFinite1 : { ψ : ord1 → Set (suc (suc n)) } + TransFinite1 : { ψ : ord1 → Set (suc n) } → ( (x : ord1) → ( (y : ord1 ) → y o< x → ψ y ) → ψ x ) → ∀ (x : ord1) → ψ x - TransFinite1 {ψ} lt x = TransFinite {n} {suc (suc n)} {ψ} caseΦ caseOSuc x where + TransFinite1 {ψ} lt x = TransFinite {n} {suc n} {ψ} caseΦ caseOSuc x where caseΦ : (lx : Nat) → ((x₁ : Ordinal) → x₁ o< ordinal lx (Φ lx) → ψ x₁) → ψ (record { lv = lx ; ord = Φ lx }) caseΦ lx prev = lt (ordinal lx (Φ lx) ) prev