Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff OPair.agda @ 361:4cbcf71b09c4
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 17 Jul 2020 16:33:30 +0900 |
parents | 2a8a51375e49 |
children | 8a430df110eb |
line wrap: on
line diff
--- a/OPair.agda Wed Jul 15 08:42:30 2020 +0900 +++ b/OPair.agda Fri Jul 17 16:33:30 2020 +0900 @@ -143,11 +143,29 @@ checkAB : { p : Ordinal } → def ZFProduct p → Set n checkAB (pair x y) = odef A x ∧ odef B y pmax : Ordinal - pmax = omax (odmax A) (odmax B) - <pmax : {y : Ordinal} → def ZFProduct y ∧ ({x : Ordinal} (p : def ZFProduct x) → checkAB p) → y o< omax (odmax A) (odmax B) - <pmax {y} = TransFinite {λ y → def ZFProduct y ∧ ({x : Ordinal} (p : def ZFProduct x) → checkAB p) → y o< omax (odmax A) (odmax B)} ind y where - ind : (x : Ordinal) - → ((y₁ : Ordinal) → y₁ o< x → def ZFProduct y₁ ∧ ({x₁ : Ordinal} (p : def ZFProduct x₁) → checkAB p) → y₁ o< (omax (odmax A) (odmax B))) - → def ZFProduct x ∧ ({x₁ : Ordinal} (p : def ZFProduct x₁) → checkAB p) → x o< (omax (HOD.odmax A) (HOD.odmax B)) - ind = {!!} + pmax = next (omax (od→ord A) (od→ord B)) + <pmax : {y : Ordinal} → def ZFProduct y ∧ ({x : Ordinal} (p : def ZFProduct x) → checkAB p) → y o< next (omax (od→ord A) (od→ord B)) + <pmax {y} prod = {!!} where + prod-odmax : ( x y : HOD) → Ordinal + prod-odmax x y = omax (od→ord (x , x)) (od→ord (x , y)) + lemma : {x y z : HOD } → ((x , x ) , (x , y )) ∋ z → od→ord z o< osuc (osuc (od→ord (x , y) )) + lemma {x} {y} {z} = {!!} + lemma1 : {x y : HOD } → A ∋ x → B ∋ y → od→ord (x , y) o< omax (odmax A) (odmax B) + lemma1 {x} {y} A∋x B∋y with trio< (odmax A) (odmax B) + lemma1 {x} {y} A∋x B∋y | tri< a ¬b ¬c = begin + od→ord (x , y) + ≤⟨ {!!} ⟩ + odmax B + ∎ where open o≤-Reasoning O + lemma1 {x} {y} A∋x B∋y | tri≈ ¬a b ¬c = {!!} + lemma1 {x} {y} A∋x B∋y | tri> ¬a ¬b c = {!!} +-- lemma2 : od→ord (x , y) o< osuc (omax (odmax A) (odmax B)) +-- lemma2 = begin +-- {!!} +-- ≤⟨ {!!} ⟩ +-- {!!} +-- ∎ where open o≤-Reasoning O + a = π1 (subst (λ k → def ZFProduct k) (sym diso) (proj1 prod)) + b = π2 (subst (λ k → def ZFProduct k) (sym diso) (proj1 prod)) +