Mercurial > hg > Members > kono > Proof > ZF-in-agda
annotate OPair.agda @ 361:4cbcf71b09c4
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 17 Jul 2020 16:33:30 +0900 |
parents | 2a8a51375e49 |
children | 8a430df110eb |
rev | line source |
---|---|
272
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
1 open import Level |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
2 open import Ordinals |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
3 module OPair {n : Level } (O : Ordinals {n}) where |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
4 |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
5 open import zf |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
6 open import logic |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
7 import OD |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
8 |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
9 open import Relation.Nullary |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
10 open import Relation.Binary |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
11 open import Data.Empty |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
12 open import Relation.Binary |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
13 open import Relation.Binary.Core |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
14 open import Relation.Binary.PropositionalEquality |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
15 open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
16 |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
17 open inOrdinal O |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
18 open OD O |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
19 open OD.OD |
329 | 20 open OD.HOD |
277
d9d3654baee1
seperate choice from LEM
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
272
diff
changeset
|
21 open ODAxiom odAxiom |
272
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
22 |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
23 open _∧_ |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
24 open _∨_ |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
25 open Bool |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
26 |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
27 open _==_ |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
28 |
329 | 29 _=h=_ : (x y : HOD) → Set n |
30 x =h= y = od x == od y | |
31 | |
32 <_,_> : (x y : HOD) → HOD | |
272
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
33 < x , y > = (x , x ) , (x , y ) |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
34 |
329 | 35 exg-pair : { x y : HOD } → (x , y ) =h= ( y , x ) |
272
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
36 exg-pair {x} {y} = record { eq→ = left ; eq← = right } where |
329 | 37 left : {z : Ordinal} → odef (x , y) z → odef (y , x) z |
272
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
38 left (case1 t) = case2 t |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
39 left (case2 t) = case1 t |
329 | 40 right : {z : Ordinal} → odef (y , x) z → odef (x , y) z |
272
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
41 right (case1 t) = case2 t |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
42 right (case2 t) = case1 t |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
43 |
329 | 44 ord≡→≡ : { x y : HOD } → od→ord x ≡ od→ord y → x ≡ y |
272
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
45 ord≡→≡ eq = subst₂ (λ j k → j ≡ k ) oiso oiso ( cong ( λ k → ord→od k ) eq ) |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
46 |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
47 od≡→≡ : { x y : Ordinal } → ord→od x ≡ ord→od y → x ≡ y |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
48 od≡→≡ eq = subst₂ (λ j k → j ≡ k ) diso diso ( cong ( λ k → od→ord k ) eq ) |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
49 |
329 | 50 eq-prod : { x x' y y' : HOD } → x ≡ x' → y ≡ y' → < x , y > ≡ < x' , y' > |
272
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
51 eq-prod refl refl = refl |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
52 |
329 | 53 prod-eq : { x x' y y' : HOD } → < x , y > =h= < x' , y' > → (x ≡ x' ) ∧ ( y ≡ y' ) |
272
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
54 prod-eq {x} {x'} {y} {y'} eq = record { proj1 = lemmax ; proj2 = lemmay } where |
329 | 55 lemma0 : {x y z : HOD } → ( x , x ) =h= ( z , y ) → x ≡ y |
272
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
56 lemma0 {x} {y} eq with trio< (od→ord x) (od→ord y) |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
57 lemma0 {x} {y} eq | tri< a ¬b ¬c with eq← eq {od→ord y} (case2 refl) |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
58 lemma0 {x} {y} eq | tri< a ¬b ¬c | case1 s = ⊥-elim ( o<¬≡ (sym s) a ) |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
59 lemma0 {x} {y} eq | tri< a ¬b ¬c | case2 s = ⊥-elim ( o<¬≡ (sym s) a ) |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
60 lemma0 {x} {y} eq | tri≈ ¬a b ¬c = ord≡→≡ b |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
61 lemma0 {x} {y} eq | tri> ¬a ¬b c with eq← eq {od→ord y} (case2 refl) |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
62 lemma0 {x} {y} eq | tri> ¬a ¬b c | case1 s = ⊥-elim ( o<¬≡ s c ) |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
63 lemma0 {x} {y} eq | tri> ¬a ¬b c | case2 s = ⊥-elim ( o<¬≡ s c ) |
329 | 64 lemma2 : {x y z : HOD } → ( x , x ) =h= ( z , y ) → z ≡ y |
272
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
65 lemma2 {x} {y} {z} eq = trans (sym (lemma0 lemma3 )) ( lemma0 eq ) where |
329 | 66 lemma3 : ( x , x ) =h= ( y , z ) |
272
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
67 lemma3 = ==-trans eq exg-pair |
329 | 68 lemma1 : {x y : HOD } → ( x , x ) =h= ( y , y ) → x ≡ y |
272
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
69 lemma1 {x} {y} eq with eq← eq {od→ord y} (case2 refl) |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
70 lemma1 {x} {y} eq | case1 s = ord≡→≡ (sym s) |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
71 lemma1 {x} {y} eq | case2 s = ord≡→≡ (sym s) |
329 | 72 lemma4 : {x y z : HOD } → ( x , y ) =h= ( x , z ) → y ≡ z |
272
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
73 lemma4 {x} {y} {z} eq with eq← eq {od→ord z} (case2 refl) |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
74 lemma4 {x} {y} {z} eq | case1 s with ord≡→≡ s -- x ≡ z |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
75 ... | refl with lemma2 (==-sym eq ) |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
76 ... | refl = refl |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
77 lemma4 {x} {y} {z} eq | case2 s = ord≡→≡ (sym s) -- y ≡ z |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
78 lemmax : x ≡ x' |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
79 lemmax with eq→ eq {od→ord (x , x)} (case1 refl) |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
80 lemmax | case1 s = lemma1 (ord→== s ) -- (x,x)≡(x',x') |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
81 lemmax | case2 s with lemma2 (ord→== s ) -- (x,x)≡(x',y') with x'≡y' |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
82 ... | refl = lemma1 (ord→== s ) |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
83 lemmay : y ≡ y' |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
84 lemmay with lemmax |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
85 ... | refl with lemma4 eq -- with (x,y)≡(x,y') |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
86 ... | eq1 = lemma4 (ord→== (cong (λ k → od→ord k ) eq1 )) |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
87 |
329 | 88 -- |
89 -- unlike ordered pair, ZFProduct is not a HOD | |
90 | |
272
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
91 data ord-pair : (p : Ordinal) → Set n where |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
92 pair : (x y : Ordinal ) → ord-pair ( od→ord ( < ord→od x , ord→od y > ) ) |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
93 |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
94 ZFProduct : OD |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
95 ZFProduct = record { def = λ x → ord-pair x } |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
96 |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
97 -- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
98 -- eq-pair : { x x' y y' : Ordinal } → x ≡ x' → y ≡ y' → pair x y ≅ pair x' y' |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
99 -- eq-pair refl refl = HE.refl |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
100 |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
101 pi1 : { p : Ordinal } → ord-pair p → Ordinal |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
102 pi1 ( pair x y) = x |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
103 |
329 | 104 π1 : { p : HOD } → def ZFProduct (od→ord p) → HOD |
272
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
105 π1 lt = ord→od (pi1 lt ) |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
106 |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
107 pi2 : { p : Ordinal } → ord-pair p → Ordinal |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
108 pi2 ( pair x y ) = y |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
109 |
329 | 110 π2 : { p : HOD } → def ZFProduct (od→ord p) → HOD |
272
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
111 π2 lt = ord→od (pi2 lt ) |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
112 |
329 | 113 op-cons : { ox oy : Ordinal } → def ZFProduct (od→ord ( < ord→od ox , ord→od oy > )) |
272
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
114 op-cons {ox} {oy} = pair ox oy |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
115 |
329 | 116 def-subst : {Z : OD } {X : Ordinal }{z : OD } {x : Ordinal }→ def Z X → Z ≡ z → X ≡ x → def z x |
117 def-subst df refl refl = df | |
118 | |
119 p-cons : ( x y : HOD ) → def ZFProduct (od→ord ( < x , y >)) | |
120 p-cons x y = def-subst {_} {_} {ZFProduct} {od→ord (< x , y >)} (pair (od→ord x) ( od→ord y )) refl ( | |
121 let open ≡-Reasoning in begin | |
122 od→ord < ord→od (od→ord x) , ord→od (od→ord y) > | |
123 ≡⟨ cong₂ (λ j k → od→ord < j , k >) oiso oiso ⟩ | |
124 od→ord < x , y > | |
125 ∎ ) | |
272
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
126 |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
127 op-iso : { op : Ordinal } → (q : ord-pair op ) → od→ord < ord→od (pi1 q) , ord→od (pi2 q) > ≡ op |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
128 op-iso (pair ox oy) = refl |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
129 |
329 | 130 p-iso : { x : HOD } → (p : def ZFProduct (od→ord x) ) → < π1 p , π2 p > ≡ x |
272
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
131 p-iso {x} p = ord≡→≡ (op-iso p) |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
132 |
329 | 133 p-pi1 : { x y : HOD } → (p : def ZFProduct (od→ord < x , y >) ) → π1 p ≡ x |
272
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
134 p-pi1 {x} {y} p = proj1 ( prod-eq ( ord→== (op-iso p) )) |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
135 |
329 | 136 p-pi2 : { x y : HOD } → (p : def ZFProduct (od→ord < x , y >) ) → π2 p ≡ y |
272
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
137 p-pi2 {x} {y} p = proj2 ( prod-eq ( ord→== (op-iso p))) |
985a1af11bce
separate ordered pair and Boolean Algebra
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff
changeset
|
138 |
360 | 139 |
140 _⊗_ : (A B : HOD) → HOD | |
141 A ⊗ B = record { od = record { def = λ x → def ZFProduct x ∧ ( { x : Ordinal } → (p : def ZFProduct x ) → checkAB p ) } ; | |
142 odmax = pmax; <odmax = <pmax } where | |
143 checkAB : { p : Ordinal } → def ZFProduct p → Set n | |
144 checkAB (pair x y) = odef A x ∧ odef B y | |
145 pmax : Ordinal | |
361 | 146 pmax = next (omax (od→ord A) (od→ord B)) |
147 <pmax : {y : Ordinal} → def ZFProduct y ∧ ({x : Ordinal} (p : def ZFProduct x) → checkAB p) → y o< next (omax (od→ord A) (od→ord B)) | |
148 <pmax {y} prod = {!!} where | |
149 prod-odmax : ( x y : HOD) → Ordinal | |
150 prod-odmax x y = omax (od→ord (x , x)) (od→ord (x , y)) | |
151 lemma : {x y z : HOD } → ((x , x ) , (x , y )) ∋ z → od→ord z o< osuc (osuc (od→ord (x , y) )) | |
152 lemma {x} {y} {z} = {!!} | |
153 lemma1 : {x y : HOD } → A ∋ x → B ∋ y → od→ord (x , y) o< omax (odmax A) (odmax B) | |
154 lemma1 {x} {y} A∋x B∋y with trio< (odmax A) (odmax B) | |
155 lemma1 {x} {y} A∋x B∋y | tri< a ¬b ¬c = begin | |
156 od→ord (x , y) | |
157 ≤⟨ {!!} ⟩ | |
158 odmax B | |
159 ∎ where open o≤-Reasoning O | |
160 lemma1 {x} {y} A∋x B∋y | tri≈ ¬a b ¬c = {!!} | |
161 lemma1 {x} {y} A∋x B∋y | tri> ¬a ¬b c = {!!} | |
360 | 162 |
361 | 163 -- lemma2 : od→ord (x , y) o< osuc (omax (odmax A) (odmax B)) |
164 -- lemma2 = begin | |
165 -- {!!} | |
166 -- ≤⟨ {!!} ⟩ | |
167 -- {!!} | |
168 -- ∎ where open o≤-Reasoning O | |
169 a = π1 (subst (λ k → def ZFProduct k) (sym diso) (proj1 prod)) | |
170 b = π2 (subst (λ k → def ZFProduct k) (sym diso) (proj1 prod)) | |
171 |