Mercurial > hg > Members > kono > Proof > ZF-in-agda
diff filter.agda @ 190:6e778b0a7202
add filter
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 26 Jul 2019 21:08:06 +0900 |
parents | |
children | 9eb6a8691f02 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/filter.agda Fri Jul 26 21:08:06 2019 +0900 @@ -0,0 +1,65 @@ +open import Level +module filter where + +open import zf +open import ordinal +open import OD +open import Relation.Nullary +open import Relation.Binary +open import Data.Empty +open import Relation.Binary +open import Relation.Binary.Core +open import Relation.Binary.PropositionalEquality + +record Filter {n : Level} ( P max : OD {suc n} ) : Set (suc (suc n)) where + field + _⊇_ : OD {suc n} → OD {suc n} → Set (suc n) + G : OD {suc n} + G∋1 : G ∋ max + Gmax : { p : OD {suc n} } → P ∋ p → p ⊇ max + Gless : { p q : OD {suc n} } → G ∋ p → P ∋ q → p ⊇ q → G ∋ q + Gcompat : { p q : OD {suc n} } → G ∋ p → G ∋ q → ¬ ( + ( r : OD {suc n}) → (( p ⊇ r ) ∧ ( p ⊇ r ))) + +dense : {n : Level} → Set (suc (suc n)) +dense {n} = { D P p : OD {suc n} } → ({x : OD {suc n}} → P ∋ p → ¬ ( ( q : OD {suc n}) → D ∋ q → od→ord p o< od→ord q )) + +open OD.OD + +-- H(ω,2) = Power ( Power ω ) = Def ( Def ω)) + +Pred : {n : Level} ( Dom : OD {suc n} ) → OD {suc n} +Pred {n} dom = record { + def = λ x → def dom x → Set n + } + +Hω2 : {n : Level} → OD {suc n} +Hω2 {n} = record { def = λ x → {dom : Ordinal {suc n}} → x ≡ od→ord ( Pred ( ord→od dom )) } + +_⊆_ : {n : Level} → ( A B : OD {suc n} ) → ∀{ x : OD {suc n} } → Set (suc n) +_⊆_ A B {x} = A ∋ x → B ∋ x + +Hω2Filter : {n : Level} → Filter {n} Hω2 od∅ +Hω2Filter {n} = record { + _⊇_ = {!!} + ; G = {!!} + ; G∋1 = {!!} + ; Gmax = {!!} + ; Gless = {!!} + ; Gcompat = {!!} + } where + P = Hω2 + _⊇_ : OD {suc n} → OD {suc n} → Set (suc n) + _⊇_ = {!!} + G : OD {suc n} + G = {!!} + G∋1 : G ∋ od∅ + G∋1 = {!!} + Gmax : { p : OD {suc n} } → P ∋ p → p ⊇ od∅ + Gmax = {!!} + Gless : { p q : OD {suc n} } → G ∋ p → P ∋ q → p ⊇ q → G ∋ q + Gless = {!!} + Gcompat : { p q : OD {suc n} } → G ∋ p → G ∋ q → ¬ ( + ( r : OD {suc n}) → (( p ⊇ r ) ∧ ( p ⊇ r ))) + Gcompat = {!!} +