annotate filter.agda @ 190:6e778b0a7202

add filter
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Fri, 26 Jul 2019 21:08:06 +0900
parents
children 9eb6a8691f02
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
190
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1 open import Level
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
2 module filter where
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
3
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
4 open import zf
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
5 open import ordinal
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
6 open import OD
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
7 open import Relation.Nullary
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
8 open import Relation.Binary
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
9 open import Data.Empty
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
10 open import Relation.Binary
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
11 open import Relation.Binary.Core
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
12 open import Relation.Binary.PropositionalEquality
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
13
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
14 record Filter {n : Level} ( P max : OD {suc n} ) : Set (suc (suc n)) where
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
15 field
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
16 _⊇_ : OD {suc n} → OD {suc n} → Set (suc n)
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
17 G : OD {suc n}
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
18 G∋1 : G ∋ max
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
19 Gmax : { p : OD {suc n} } → P ∋ p → p ⊇ max
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
20 Gless : { p q : OD {suc n} } → G ∋ p → P ∋ q → p ⊇ q → G ∋ q
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
21 Gcompat : { p q : OD {suc n} } → G ∋ p → G ∋ q → ¬ (
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
22 ( r : OD {suc n}) → (( p ⊇ r ) ∧ ( p ⊇ r )))
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
23
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
24 dense : {n : Level} → Set (suc (suc n))
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
25 dense {n} = { D P p : OD {suc n} } → ({x : OD {suc n}} → P ∋ p → ¬ ( ( q : OD {suc n}) → D ∋ q → od→ord p o< od→ord q ))
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
26
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
27 open OD.OD
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
28
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
29 -- H(ω,2) = Power ( Power ω ) = Def ( Def ω))
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
30
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
31 Pred : {n : Level} ( Dom : OD {suc n} ) → OD {suc n}
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
32 Pred {n} dom = record {
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
33 def = λ x → def dom x → Set n
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
34 }
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
35
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
36 Hω2 : {n : Level} → OD {suc n}
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
37 Hω2 {n} = record { def = λ x → {dom : Ordinal {suc n}} → x ≡ od→ord ( Pred ( ord→od dom )) }
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
38
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
39 _⊆_ : {n : Level} → ( A B : OD {suc n} ) → ∀{ x : OD {suc n} } → Set (suc n)
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
40 _⊆_ A B {x} = A ∋ x → B ∋ x
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
41
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
42 Hω2Filter : {n : Level} → Filter {n} Hω2 od∅
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
43 Hω2Filter {n} = record {
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
44 _⊇_ = {!!}
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
45 ; G = {!!}
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
46 ; G∋1 = {!!}
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
47 ; Gmax = {!!}
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
48 ; Gless = {!!}
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
49 ; Gcompat = {!!}
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
50 } where
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
51 P = Hω2
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
52 _⊇_ : OD {suc n} → OD {suc n} → Set (suc n)
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
53 _⊇_ = {!!}
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
54 G : OD {suc n}
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
55 G = {!!}
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
56 G∋1 : G ∋ od∅
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
57 G∋1 = {!!}
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
58 Gmax : { p : OD {suc n} } → P ∋ p → p ⊇ od∅
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
59 Gmax = {!!}
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
60 Gless : { p q : OD {suc n} } → G ∋ p → P ∋ q → p ⊇ q → G ∋ q
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
61 Gless = {!!}
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
62 Gcompat : { p q : OD {suc n} } → G ∋ p → G ∋ q → ¬ (
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
63 ( r : OD {suc n}) → (( p ⊇ r ) ∧ ( p ⊇ r )))
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
64 Gcompat = {!!}
6e778b0a7202 add filter
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
65