diff src/OPair.agda @ 431:a5f8084b8368

reorganiztion for apkg
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 21 Dec 2020 10:23:37 +0900
parents
children 55ab5de1ae02
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/OPair.agda	Mon Dec 21 10:23:37 2020 +0900
@@ -0,0 +1,213 @@
+{-# OPTIONS --allow-unsolved-metas #-}
+
+open import Level
+open import Ordinals
+module OPair {n : Level } (O : Ordinals {n})   where
+
+open import zf
+open import logic
+import OD 
+import ODUtil
+import OrdUtil
+
+open import Relation.Nullary
+open import Relation.Binary
+open import Data.Empty
+open import Relation.Binary
+open import Relation.Binary.Core
+open import  Relation.Binary.PropositionalEquality
+open import Data.Nat renaming ( zero to Zero ; suc to Suc ;  ℕ to Nat ; _⊔_ to _n⊔_ ) 
+
+open OD O
+open OD.OD
+open OD.HOD
+open ODAxiom odAxiom
+
+open Ordinals.Ordinals  O
+open Ordinals.IsOrdinals isOrdinal
+open Ordinals.IsNext isNext
+open OrdUtil O
+open ODUtil O
+
+open _∧_
+open _∨_
+open Bool
+
+open _==_
+
+<_,_> : (x y : HOD) → HOD
+< x , y > = (x , x ) , (x , y )
+
+exg-pair : { x y : HOD } → (x , y ) =h= ( y , x )
+exg-pair {x} {y} = record { eq→ = left ; eq← = right } where
+    left : {z : Ordinal} → odef (x , y) z → odef (y , x) z 
+    left (case1 t) = case2 t
+    left (case2 t) = case1 t
+    right : {z : Ordinal} → odef (y , x) z → odef (x , y) z 
+    right (case1 t) = case2 t
+    right (case2 t) = case1 t
+
+ord≡→≡ : { x y : HOD } → & x ≡ & y → x ≡ y
+ord≡→≡ eq = subst₂ (λ j k → j ≡ k ) *iso *iso ( cong ( λ k → * k ) eq )
+
+od≡→≡ : { x y : Ordinal } → * x ≡ * y → x ≡ y
+od≡→≡ eq = subst₂ (λ j k → j ≡ k ) &iso &iso ( cong ( λ k → & k ) eq )
+
+eq-prod : { x x' y y' : HOD } → x ≡ x' → y ≡ y' → < x , y > ≡ < x' , y' >
+eq-prod refl refl = refl
+
+xx=zy→x=y : {x y z : HOD } → ( x , x ) =h= ( z , y ) → x ≡ y
+xx=zy→x=y {x} {y} eq with trio< (& x) (& y) 
+xx=zy→x=y {x} {y} eq | tri< a ¬b ¬c with eq← eq {& y} (case2 refl) 
+xx=zy→x=y {x} {y} eq | tri< a ¬b ¬c | case1 s = ⊥-elim ( o<¬≡ (sym s) a )
+xx=zy→x=y {x} {y} eq | tri< a ¬b ¬c | case2 s = ⊥-elim ( o<¬≡ (sym s) a )
+xx=zy→x=y {x} {y} eq | tri≈ ¬a b ¬c = ord≡→≡ b
+xx=zy→x=y {x} {y} eq | tri> ¬a ¬b c  with eq← eq {& y} (case2 refl) 
+xx=zy→x=y {x} {y} eq | tri> ¬a ¬b c | case1 s = ⊥-elim ( o<¬≡ s c )
+xx=zy→x=y {x} {y} eq | tri> ¬a ¬b c | case2 s = ⊥-elim ( o<¬≡ s c )
+
+prod-eq : { x x' y y' : HOD } → < x , y > =h= < x' , y' > → (x ≡ x' ) ∧ ( y ≡ y' )
+prod-eq {x} {x'} {y} {y'} eq = ⟪ lemmax , lemmay ⟫ where
+    lemma2 : {x y z : HOD } → ( x , x ) =h= ( z , y ) → z ≡ y
+    lemma2 {x} {y} {z} eq = trans (sym (xx=zy→x=y lemma3 )) ( xx=zy→x=y eq )  where
+        lemma3 : ( x , x ) =h= ( y , z )
+        lemma3 = ==-trans eq exg-pair
+    lemma1 : {x y : HOD } → ( x , x ) =h= ( y , y ) → x ≡ y
+    lemma1 {x} {y} eq with eq← eq {& y} (case2 refl)
+    lemma1 {x} {y} eq | case1 s = ord≡→≡ (sym s)
+    lemma1 {x} {y} eq | case2 s = ord≡→≡ (sym s)
+    lemma4 : {x y z : HOD } → ( x , y ) =h= ( x , z ) → y ≡ z
+    lemma4 {x} {y} {z} eq with eq← eq {& z} (case2 refl)
+    lemma4 {x} {y} {z} eq | case1 s with ord≡→≡ s -- x ≡ z
+    ... | refl with lemma2 (==-sym eq )
+    ... | refl = refl
+    lemma4 {x} {y} {z} eq | case2 s = ord≡→≡ (sym s) -- y ≡ z
+    lemmax : x ≡ x'
+    lemmax with eq→ eq {& (x , x)} (case1 refl) 
+    lemmax | case1 s = lemma1 (ord→== s )  -- (x,x)≡(x',x')
+    lemmax | case2 s with lemma2 (ord→== s ) -- (x,x)≡(x',y') with x'≡y'
+    ... | refl = lemma1 (ord→== s )
+    lemmay : y ≡ y'
+    lemmay with lemmax
+    ... | refl with lemma4 eq -- with (x,y)≡(x,y')
+    ... | eq1 = lemma4 (ord→== (cong (λ  k → & k )  eq1 ))
+
+--
+-- unlike ordered pair, ZFProduct is not a HOD
+
+data ord-pair : (p : Ordinal) → Set n where
+   pair : (x y : Ordinal ) → ord-pair ( & ( < * x , * y > ) )
+
+ZFProduct : OD
+ZFProduct = record { def = λ x → ord-pair x }
+
+-- open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) 
+-- eq-pair : { x x' y y' : Ordinal } → x ≡ x' → y ≡ y' → pair x y ≅ pair x' y'
+-- eq-pair refl refl = HE.refl
+
+pi1 : { p : Ordinal } →   ord-pair p →  Ordinal
+pi1 ( pair x y) = x
+
+π1 : { p : HOD } → def ZFProduct (& p) → HOD
+π1 lt = * (pi1 lt )
+
+pi2 : { p : Ordinal } →   ord-pair p →  Ordinal
+pi2 ( pair x y ) = y
+
+π2 : { p : HOD } → def ZFProduct (& p) → HOD
+π2 lt = * (pi2 lt )
+
+op-cons :  { ox oy  : Ordinal } → def ZFProduct (& ( < * ox , * oy >   ))
+op-cons {ox} {oy} = pair ox oy
+
+def-subst :  {Z : OD } {X : Ordinal  }{z : OD } {x : Ordinal  }→ def Z X → Z ≡ z  →  X ≡ x  →  def z x
+def-subst df refl refl = df
+
+p-cons :  ( x y  : HOD ) → def ZFProduct (& ( < x , y >))
+p-cons x y = def-subst {_} {_} {ZFProduct} {& (< x , y >)} (pair (& x) ( & y )) refl (
+   let open ≡-Reasoning in begin
+       & < * (& x) , * (& y) >
+   ≡⟨ cong₂ (λ j k → & < j , k >) *iso *iso ⟩
+       & < x , y >
+   ∎ ) 
+
+op-iso :  { op : Ordinal } → (q : ord-pair op ) → & < * (pi1 q) , * (pi2 q) > ≡ op
+op-iso (pair ox oy) = refl
+
+p-iso :  { x  : HOD } → (p : def ZFProduct (&  x) ) → < π1 p , π2 p > ≡ x
+p-iso {x} p = ord≡→≡ (op-iso p) 
+
+p-pi1 :  { x y : HOD } → (p : def ZFProduct (&  < x , y >) ) →  π1 p ≡ x
+p-pi1 {x} {y} p = proj1 ( prod-eq ( ord→== (op-iso p) ))
+
+p-pi2 :  { x y : HOD } → (p : def ZFProduct (&  < x , y >) ) →  π2 p ≡ y
+p-pi2 {x} {y} p = proj2 ( prod-eq ( ord→== (op-iso p)))
+
+ω-pair :  {x y : HOD} → {m : Ordinal} → & x o< next m → & y o< next m → & (x , y) o< next m
+ω-pair lx ly = next< (omax<nx lx ly ) ho<
+
+ω-opair : {x y : HOD} → {m : Ordinal} → & x o< next m → & y o< next m → & < x , y > o< next m
+ω-opair {x} {y} {m} lx ly = lemma0 where
+    lemma0 : & < x , y > o< next m
+    lemma0 = osucprev (begin
+         osuc (& < x , y >)
+       <⟨ osuc<nx ho< ⟩
+         next (omax (& (x , x)) (& (x , y)))
+       ≡⟨ cong (λ k → next k) (sym ( omax≤ _ _ pair-xx<xy )) ⟩
+         next (osuc (& (x , y)))
+       ≡⟨ sym (nexto≡) ⟩
+         next (& (x , y))
+       ≤⟨ x<ny→≤next (ω-pair lx ly) ⟩
+         next m
+       ∎ ) where
+          open o≤-Reasoning O
+
+_⊗_ : (A B : HOD) → HOD
+A ⊗ B  = Union ( Replace B (λ b → Replace A (λ a → < a , b > ) ))
+
+product→ : {A B a b : HOD} → A ∋ a → B ∋ b  → ( A ⊗ B ) ∋ < a , b >
+product→ {A} {B} {a} {b} A∋a B∋b = λ t → t (& (Replace A (λ a → < a , b >)))
+             ⟪ lemma1 , subst (λ k → odef k (& < a , b >)) (sym *iso) lemma2 ⟫ where
+    lemma1 :  odef (Replace B (λ b₁ → Replace A (λ a₁ → < a₁ , b₁ >))) (& (Replace A (λ a₁ → < a₁ , b >)))
+    lemma1 = replacement← B b B∋b
+    lemma2 : odef (Replace A (λ a₁ → < a₁ , b >)) (& < a , b >)
+    lemma2 = replacement← A a A∋a
+
+x<nextA : {A x : HOD} → A ∋ x →  & x o< next (odmax A)
+x<nextA {A} {x} A∋x = ordtrans (c<→o< {x} {A} A∋x) ho<
+
+A<Bnext : {A B x : HOD} → & A o< & B → A ∋ x → & x o< next (odmax B)
+A<Bnext {A} {B} {x} lt A∋x = osucprev (begin
+          osuc (& x)  
+       <⟨ osucc (c<→o< A∋x) ⟩
+          osuc (& A)
+       <⟨ osucc lt ⟩
+          osuc (& B)
+       <⟨ osuc<nx ho<  ⟩
+          next (odmax B)
+       ∎ ) where open o≤-Reasoning O
+
+ZFP  : (A B : HOD) → HOD
+ZFP  A B = record { od = record { def = λ x → ord-pair x ∧ ((p : ord-pair x ) → odef A (pi1 p) ∧ odef B (pi2 p) )} ;
+        odmax = omax (next (odmax A)) (next (odmax B)) ; <odmax = λ {y} px → lemma y px } 
+   where
+       lemma : (y : Ordinal) → ( ord-pair y ∧ ((p : ord-pair y) → odef A (pi1 p) ∧ odef B (pi2 p))) → y o< omax (next (odmax A)) (next (odmax B))
+       lemma y lt with proj1 lt
+       lemma p lt | pair x y with trio< (& A) (& B) 
+       lemma p lt | pair x y | tri< a ¬b ¬c = ordtrans (ω-opair (A<Bnext a (subst (λ k → odef A k ) (sym &iso)
+           (proj1 (proj2 lt (pair x y))))) (lemma1 (proj2 (proj2 lt (pair x y))))) (omax-y _ _ ) where
+               lemma1 : odef B y → & (* y) o< next (HOD.odmax B)
+               lemma1 lt = x<nextA {B} (d→∋ B lt)
+       lemma p lt | pair x y | tri≈ ¬a b ¬c = ordtrans (ω-opair (x<nextA {A} (d→∋ A ((proj1 (proj2 lt (pair x y)))))) lemma2 ) (omax-x _ _ ) where
+                lemma2 :  & (* y) o< next (HOD.odmax A)
+                lemma2 = ordtrans ( subst (λ k → & (* y) o< k ) (sym b) (c<→o< (d→∋ B ((proj2 (proj2 lt (pair x y))))))) ho<
+       lemma p lt | pair x y | tri> ¬a ¬b c = ordtrans (ω-opair  (x<nextA {A} (d→∋ A ((proj1 (proj2 lt (pair x y))))))
+           (A<Bnext c (subst (λ k → odef B k ) (sym &iso) (proj2 (proj2 lt (pair x y)))))) (omax-x _ _ ) 
+
+ZFP⊆⊗ :  {A B : HOD} {x : Ordinal} → odef (ZFP A B) x → odef (A ⊗ B) x
+ZFP⊆⊗ {A} {B} {px} ⟪ (pair x y) ,  p2 ⟫ = product→ (d→∋ A (proj1 (p2 (pair x y) ))) (d→∋ B (proj2 (p2 (pair x y) )))
+
+-- axiom of choice required
+-- ⊗⊆ZFP : {A B x : HOD} → ( A ⊗ B ) ∋ x → def ZFProduct (& x)
+-- ⊗⊆ZFP {A} {B} {x} lt = subst (λ k → ord-pair (& k )) {!!} op-cons
+