Mercurial > hg > Members > kono > Proof > ZF-in-agda
view LEMC.agda @ 283:2d77b6d12a22
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 10 May 2020 00:18:59 +0900 |
parents | 6630dab08784 |
children | a8f9c8a27e8d |
line wrap: on
line source
open import Level open import Ordinals open import logic open import Relation.Nullary module LEMC {n : Level } (O : Ordinals {n} ) (p∨¬p : ( p : Set (suc n)) → p ∨ ( ¬ p )) where open import zf open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Binary open import Relation.Binary.Core open import nat import OD open inOrdinal O open OD O open OD.OD open OD._==_ open ODAxiom odAxiom open import zfc --- With assuption of OD is ordered, p ∨ ( ¬ p ) <=> axiom of choice --- record choiced ( X : OD) : Set (suc n) where field a-choice : OD is-in : X ∋ a-choice open choiced OD→ZFC : ZFC OD→ZFC = record { ZFSet = OD ; _∋_ = _∋_ ; _≈_ = _==_ ; ∅ = od∅ ; Select = Select ; isZFC = isZFC } where -- infixr 200 _∈_ -- infixr 230 _∩_ _∪_ isZFC : IsZFC (OD ) _∋_ _==_ od∅ Select isZFC = record { choice-func = λ A {X} not A∋X → a-choice (choice-func X not ); choice = λ A {X} A∋X not → is-in (choice-func X not) } where choice-func : (X : OD ) → ¬ ( X == od∅ ) → choiced X choice-func X not = have_to_find where ψ : ( ox : Ordinal ) → Set (suc n) ψ ox = (( x : Ordinal ) → x o< ox → ( ¬ def X x )) ∨ choiced X lemma-ord : ( ox : Ordinal ) → ψ ox lemma-ord ox = TransFinite {ψ} induction ox where ∋-p : (A x : OD ) → Dec ( A ∋ x ) ∋-p A x with p∨¬p (Lift (suc n) ( A ∋ x )) -- LEM ∋-p A x | case1 (lift t) = yes t ∋-p A x | case2 t = no (λ x → t (lift x )) ∀-imply-or : {A : Ordinal → Set n } {B : Set (suc n) } → ((x : Ordinal ) → A x ∨ B) → ((x : Ordinal ) → A x) ∨ B ∀-imply-or {A} {B} ∀AB with p∨¬p (Lift ( suc n ) ((x : Ordinal ) → A x)) -- LEM ∀-imply-or {A} {B} ∀AB | case1 (lift t) = case1 t ∀-imply-or {A} {B} ∀AB | case2 x = case2 (lemma (λ not → x (lift not ))) where lemma : ¬ ((x : Ordinal ) → A x) → B lemma not with p∨¬p B lemma not | case1 b = b lemma not | case2 ¬b = ⊥-elim (not (λ x → dont-orb (∀AB x) ¬b )) induction : (x : Ordinal) → ((y : Ordinal) → y o< x → ψ y) → ψ x induction x prev with ∋-p X ( ord→od x) ... | yes p = case2 ( record { a-choice = ord→od x ; is-in = p } ) ... | no ¬p = lemma where lemma1 : (y : Ordinal) → (y o< x → def X y → ⊥) ∨ choiced X lemma1 y with ∋-p X (ord→od y) lemma1 y | yes y<X = case2 ( record { a-choice = ord→od y ; is-in = y<X } ) lemma1 y | no ¬y<X = case1 ( λ lt y<X → ¬y<X (subst (λ k → def X k ) (sym diso) y<X ) ) lemma : ((y : Ordinals.ord O) → (O Ordinals.o< y) x → def X y → ⊥) ∨ choiced X lemma = ∀-imply-or lemma1 have_to_find : choiced X have_to_find = dont-or (lemma-ord (od→ord X )) ¬¬X∋x where ¬¬X∋x : ¬ ((x : Ordinal) → x o< (od→ord X) → def X x → ⊥) ¬¬X∋x nn = not record { eq→ = λ {x} lt → ⊥-elim (nn x (def→o< lt) lt) ; eq← = λ {x} lt → ⊥-elim ( ¬x<0 lt ) } record Minimal (x : OD) (ne : ¬ (x == od∅ ) ) : Set (suc n) where field min : OD x∋min : x ∋ min min-empty : (y : OD ) → ¬ ( min ∋ y) ∧ (x ∋ y) open Minimal open _∧_ induction : {x : OD} → ({y : OD} → x ∋ y → (ne : ¬ (y == od∅ )) → Minimal y ne ) → (ne : ¬ (x == od∅ )) → Minimal x ne induction {x} prev ne = c2 where ch : choiced x ch = choice-func x ne c1 : OD c1 = a-choice ch -- x ∋ c1 c2 : Minimal x ne c2 with p∨¬p ( (y : OD ) → ¬ ( def c1 (od→ord y) ∧ (def x (od→ord y))) ) c2 | case1 Yes = record { min = c1 ; x∋min = is-in ch ; min-empty = Yes } c2 | case2 No = c3 where y1 : OD y1 = record { def = λ y → ( def c1 y ∧ def x y) } noty1 : ¬ (y1 == od∅ ) noty1 not = ⊥-elim ( No (λ z n → ∅< n not ) ) ch1 : choiced y1 -- a-choice ch1 ∈ c1 , a-choice ch1 ∈ x ch1 = choice-func y1 noty1 c3 : Minimal x ne c3 with is-o∅ (od→ord (a-choice ch1)) ... | yes eq = record { min = od∅ ; x∋min = def-subst {x} {od→ord (a-choice ch1)} {x} (proj2 (is-in ch1)) refl (trans eq (sym ord-od∅) ) ; min-empty = λ z p → ⊥-elim ( ¬x<0 (proj1 p) ) } ... | no n = record { min = min min3 ; x∋min = x∋min3 (x∋min min3) ; min-empty = min3-empty -- λ y p → min3-empty min3 y p -- p : (min min3 ∋ y) ∧ (x ∋ y) } where lemma : (a-choice ch1 == od∅ ) → od→ord (a-choice ch1) ≡ o∅ lemma eq = begin od→ord (a-choice ch1) ≡⟨ cong (λ k → od→ord k ) (==→o≡ eq ) ⟩ od→ord od∅ ≡⟨ ord-od∅ ⟩ o∅ ∎ where open ≡-Reasoning -- Minimal (a-choice ch1) ch1not -- min ∈ a-choice ch1 , min ∩ a-choice ch1 ≡ ∅ ch1not : ¬ (a-choice ch1 == od∅) ch1not ch1=0 = n (lemma ch1=0) min3 : Minimal (a-choice ch1) ch1not min3 = prev (proj2 (is-in ch1)) (λ ch1=0 → n (lemma ch1=0)) x∋min3 : a-choice ch1 ∋ min min3 → x ∋ min min3 x∋min3 lt = {!!} min3-empty : (y : OD ) → ¬ ((min min3 ∋ y) ∧ (x ∋ y)) min3-empty y p = min-empty min3 y record { proj1 = proj1 p ; proj2 = ? } -- (min min3 ∋ y) ∧ (a-choice ch1 ∋ y) -- p : (min min3 ∋ y) ∧ (x ∋ y) Min1 : (x : OD) → (ne : ¬ (x == od∅ )) → Minimal x ne Min1 x ne = (ε-induction {λ y → (ne : ¬ (y == od∅ ) ) → Minimal y ne } induction x ne ) minimal : (x : OD ) → ¬ (x == od∅ ) → OD minimal x not = min (Min1 x not ) x∋minimal : (x : OD ) → ( ne : ¬ (x == od∅ ) ) → def x ( od→ord ( minimal x ne ) ) x∋minimal x ne = x∋min (Min1 x ne) minimal-1 : (x : OD ) → ( ne : ¬ (x == od∅ ) ) → (y : OD ) → ¬ ( def (minimal x ne) (od→ord y)) ∧ (def x (od→ord y) ) minimal-1 x ne y = min-empty (Min1 x ne ) y