Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 283:2d77b6d12a22
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 10 May 2020 00:18:59 +0900 |
parents | 6630dab08784 |
children | a8f9c8a27e8d |
files | LEMC.agda |
diffstat | 1 files changed, 9 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/LEMC.agda Sat May 09 22:25:12 2020 +0900 +++ b/LEMC.agda Sun May 10 00:18:59 2020 +0900 @@ -97,7 +97,7 @@ ch : choiced x ch = choice-func x ne c1 : OD - c1 = a-choice ch + c1 = a-choice ch -- x ∋ c1 c2 : Minimal x ne c2 with p∨¬p ( (y : OD ) → ¬ ( def c1 (od→ord y) ∧ (def x (od→ord y))) ) c2 | case1 Yes = record { @@ -110,7 +110,7 @@ y1 = record { def = λ y → ( def c1 y ∧ def x y) } noty1 : ¬ (y1 == od∅ ) noty1 not = ⊥-elim ( No (λ z n → ∅< n not ) ) - ch1 : choiced y1 + ch1 : choiced y1 -- a-choice ch1 ∈ c1 , a-choice ch1 ∈ x ch1 = choice-func y1 noty1 c3 : Minimal x ne c3 with is-o∅ (od→ord (a-choice ch1)) @@ -121,7 +121,7 @@ } ... | no n = record { min = min min3 - ; x∋min = {!!} + ; x∋min = x∋min3 (x∋min min3) ; min-empty = min3-empty -- λ y p → min3-empty min3 y p -- p : (min min3 ∋ y) ∧ (x ∋ y) } where lemma : (a-choice ch1 == od∅ ) → od→ord (a-choice ch1) ≡ o∅ @@ -132,14 +132,16 @@ ≡⟨ ord-od∅ ⟩ o∅ ∎ where open ≡-Reasoning + -- Minimal (a-choice ch1) ch1not + -- min ∈ a-choice ch1 , min ∩ a-choice ch1 ≡ ∅ ch1not : ¬ (a-choice ch1 == od∅) ch1not ch1=0 = n (lemma ch1=0) min3 : Minimal (a-choice ch1) ch1not - min3 = ( prev (proj2 (is-in ch1)) (λ ch1=0 → n (lemma ch1=0))) - x∋min3 : a-choice ch1 ∋ min min3 - x∋min3 = x∋min min3 + min3 = prev (proj2 (is-in ch1)) (λ ch1=0 → n (lemma ch1=0)) + x∋min3 : a-choice ch1 ∋ min min3 → x ∋ min min3 + x∋min3 lt = {!!} min3-empty : (y : OD ) → ¬ ((min min3 ∋ y) ∧ (x ∋ y)) - min3-empty y p = min-empty min3 y record { proj1 = proj1 p ; proj2 = {!!} } -- (min min3 ∋ y) ∧ (a-choice ch1 ∋ y) + min3-empty y p = min-empty min3 y record { proj1 = proj1 p ; proj2 = ? } -- (min min3 ∋ y) ∧ (a-choice ch1 ∋ y) -- p : (min min3 ∋ y) ∧ (x ∋ y)