Mercurial > hg > Members > kono > Proof > ZF-in-agda
view ordinal-definable.agda @ 57:419688a279e0
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 28 May 2019 11:31:43 +0900 |
parents | aad8cdce8845 |
children | 323b561210b5 |
line wrap: on
line source
open import Level module ordinal-definable where open import zf open import ordinal open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Core -- Ordinal Definable Set record OD {n : Level} : Set (suc n) where field def : (x : Ordinal {n} ) → Set n open OD open import Data.Unit open Ordinal postulate od→ord : {n : Level} → OD {n} → Ordinal {n} ord→od : {n : Level} → Ordinal {n} → OD {n} _∋_ : { n : Level } → ( a x : OD {n} ) → Set n _∋_ {n} a x = def a ( od→ord x ) _c<_ : { n : Level } → ( a x : OD {n} ) → Set n x c< a = a ∋ x record _==_ {n : Level} ( a b : OD {n} ) : Set n where field eq→ : ∀ { x : Ordinal {n} } → def a x → def b x eq← : ∀ { x : Ordinal {n} } → def b x → def a x id : {n : Level} {A : Set n} → A → A id x = x eq-refl : {n : Level} { x : OD {n} } → x == x eq-refl {n} {x} = record { eq→ = id ; eq← = id } open _==_ eq-sym : {n : Level} { x y : OD {n} } → x == y → y == x eq-sym eq = record { eq→ = eq← eq ; eq← = eq→ eq } eq-trans : {n : Level} { x y z : OD {n} } → x == y → y == z → x == z eq-trans x=y y=z = record { eq→ = λ t → eq→ y=z ( eq→ x=y t) ; eq← = λ t → eq← x=y ( eq← y=z t) } _c≤_ : {n : Level} → OD {n} → OD {n} → Set (suc n) a c≤ b = (a ≡ b) ∨ ( b ∋ a ) od∅ : {n : Level} → OD {n} od∅ {n} = record { def = λ _ → Lift n ⊥ } postulate c<→o< : {n : Level} {x y : OD {n} } → x c< y → od→ord x o< od→ord y o<→c< : {n : Level} {x y : Ordinal {n} } → x o< y → ord→od x c< ord→od y oiso : {n : Level} {x : OD {n}} → ord→od ( od→ord x ) ≡ x diso : {n : Level} {x : Ordinal {n}} → od→ord ( ord→od x ) ≡ x sup-od : {n : Level } → ( OD {n} → OD {n}) → OD {n} sup-c< : {n : Level } → ( ψ : OD {n} → OD {n}) → ∀ {x : OD {n}} → ψ x c< sup-od ψ ∅-base-def : {n : Level} → def ( ord→od (o∅ {n}) ) ≡ def (od∅ {n}) o∅→od∅ : {n : Level} → ord→od (o∅ {n}) ≡ od∅ {n} o∅→od∅ {n} = cong ( λ k → record { def = k }) ( ∅-base-def ) ∅1 : {n : Level} → ( x : OD {n} ) → ¬ ( x c< od∅ {n} ) ∅1 {n} x (lift ()) ∅3 : {n : Level} → { x : Ordinal {n}} → ( ∀(y : Ordinal {n}) → ¬ (y o< x ) ) → x ≡ o∅ {n} ∅3 {n} {x} = TransFinite {n} c1 c2 c3 x where c0 : Nat → Ordinal {n} → Set n c0 lx x = (∀(y : Ordinal {n}) → ¬ (y o< x)) → x ≡ o∅ {n} c1 : ∀ (lx : Nat ) → c0 lx (record { lv = Suc lx ; ord = ℵ lx } ) c1 lx not with not ( record { lv = lx ; ord = Φ lx } ) ... | t with t (case1 ≤-refl ) c1 lx not | t | () c2 : (lx : Nat) → c0 lx (record { lv = lx ; ord = Φ lx } ) c2 Zero not = refl c2 (Suc lx) not with not ( record { lv = lx ; ord = Φ lx } ) ... | t with t (case1 ≤-refl ) c2 (Suc lx) not | t | () c3 : (lx : Nat) (x₁ : OrdinalD lx) → c0 lx (record { lv = lx ; ord = x₁ }) → c0 lx (record { lv = lx ; ord = OSuc lx x₁ }) c3 lx (Φ .lx) d not with not ( record { lv = lx ; ord = Φ lx } ) ... | t with t (case2 Φ< ) c3 lx (Φ .lx) d not | t | () c3 lx (OSuc .lx x₁) d not with not ( record { lv = lx ; ord = OSuc lx x₁ } ) ... | t with t (case2 (s< s<refl ) ) c3 lx (OSuc .lx x₁) d not | t | () c3 (Suc lx) (ℵ lx) d not with not ( record { lv = Suc lx ; ord = OSuc (Suc lx) (Φ (Suc lx)) } ) ... | t with t (case2 (s< ℵΦ< )) c3 .(Suc lx) (ℵ lx) d not | t | () def-subst : {n : Level } {Z : OD {n}} {X : Ordinal {n} }{z : OD {n}} {x : Ordinal {n} }→ def Z X → Z ≡ z → X ≡ x → def z x def-subst df refl refl = df transitive : {n : Level } { x y z : OD {n} } → y ∋ x → z ∋ y → z ∋ x transitive {n} {x} {y} {z} x∋y z∋y with ordtrans ( c<→o< {n} {x} {y} x∋y ) ( c<→o< {n} {y} {z} z∋y ) ... | t = lemma0 (lemma t) where lemma : ( od→ord x ) o< ( od→ord z ) → def ( ord→od ( od→ord z )) ( od→ord ( ord→od ( od→ord x ))) lemma xo<z = o<→c< xo<z lemma0 : def ( ord→od ( od→ord z )) ( od→ord ( ord→od ( od→ord x ))) → def z (od→ord x) lemma0 dz = def-subst {n} { ord→od ( od→ord z )} { od→ord ( ord→od ( od→ord x))} dz (oiso) (diso) record Minimumo {n : Level } (x : Ordinal {n}) : Set (suc n) where field mino : Ordinal {n} min<x : mino o< x ominimal : {n : Level} → (x : Ordinal {n} ) → o∅ o< x → Minimumo {n} x ominimal {n} record { lv = Zero ; ord = (Φ .0) } (case1 ()) ominimal {n} record { lv = Zero ; ord = (Φ .0) } (case2 ()) ominimal {n} record { lv = Zero ; ord = (OSuc .0 ord) } (case1 ()) ominimal {n} record { lv = Zero ; ord = (OSuc .0 ord) } (case2 Φ<) = record { mino = record { lv = Zero ; ord = Φ 0 } ; min<x = case2 Φ< } ominimal {n} record { lv = (Suc lv) ; ord = (Φ .(Suc lv)) } (case1 (s≤s x)) = record { mino = record { lv = lv ; ord = Φ lv } ; min<x = case1 (s≤s ≤-refl)} ominimal {n} record { lv = (Suc lv) ; ord = (Φ .(Suc lv)) } (case2 ()) ominimal {n} record { lv = (Suc lv) ; ord = (OSuc .(Suc lv) ord) } (case1 (s≤s x)) = record { mino = record { lv = (Suc lv) ; ord = ord } ; min<x = case2 s<refl} ominimal {n} record { lv = (Suc lv) ; ord = (OSuc .(Suc lv) ord) } (case2 ()) ominimal {n} record { lv = (Suc lx) ; ord = (ℵ .lx) } (case1 (s≤s z≤n)) = record { mino = record { lv = Suc lx ; ord = Φ (Suc lx) } ; min<x = case2 ℵΦ< } ominimal {n} record { lv = (Suc lx) ; ord = (ℵ .lx) } (case2 ()) ∅5 : {n : Level} → { x : Ordinal {n} } → ¬ ( x ≡ o∅ {n} ) → o∅ {n} o< x ∅5 {n} {record { lv = Zero ; ord = (Φ .0) }} not = ⊥-elim (not refl) ∅5 {n} {record { lv = Zero ; ord = (OSuc .0 ord) }} not = case2 Φ< ∅5 {n} {record { lv = (Suc lv) ; ord = ord }} not = case1 (s≤s z≤n) ∅8 : {n : Level} → ( x : Ordinal {n} ) → ¬ x o< o∅ {n} ∅8 {n} x (case1 ()) ∅8 {n} x (case2 ()) ord-iso : {n : Level} {y : Ordinal {n} } → record { lv = lv (od→ord (ord→od y)) ; ord = ord (od→ord (ord→od y)) } ≡ record { lv = lv y ; ord = ord y } ord-iso = cong ( λ k → record { lv = lv k ; ord = ord k } ) diso -- avoiding lv != Zero error orefl : {n : Level} → { x : OD {n} } → { y : Ordinal {n} } → od→ord x ≡ y → od→ord x ≡ y orefl refl = refl ==-iso : {n : Level} → { x y : OD {n} } → ord→od (od→ord x) == ord→od (od→ord y) → x == y ==-iso {n} {x} {y} eq = record { eq→ = λ d → lemma ( eq→ eq (def-subst d (sym oiso) refl )) ; eq← = λ d → lemma ( eq← eq (def-subst d (sym oiso) refl )) } where lemma : {x : OD {n} } {z : Ordinal {n}} → def (ord→od (od→ord x)) z → def x z lemma {x} {z} d = def-subst d oiso refl =-iso : {n : Level } {x y : OD {suc n} } → (x == y) ≡ (ord→od (od→ord x) == y) =-iso {_} {_} {y} = cong ( λ k → k == y ) (sym oiso) ord→== : {n : Level} → { x y : OD {n} } → od→ord x ≡ od→ord y → x == y ord→== {n} {x} {y} eq = ==-iso (lemma (od→ord x) (od→ord y) (orefl eq)) where lemma : ( ox oy : Ordinal {n} ) → ox ≡ oy → (ord→od ox) == (ord→od oy) lemma ox ox refl = eq-refl o≡→== : {n : Level} → { x y : Ordinal {n} } → x ≡ y → ord→od x == ord→od y o≡→== {n} {x} {.x} refl = eq-refl ∅7 : {n : Level} → { x : OD {n} } → od→ord x ≡ o∅ {n} → x == od∅ {n} ∅7 {n} {x} eq = record { eq→ = e1 (orefl eq) ; eq← = e2 } where e2 : {y : Ordinal {n}} → def od∅ y → def x y e2 {y} (lift ()) e1 : {ox y : Ordinal {n}} → ox ≡ o∅ {n} → def x y → def od∅ y e1 {o∅} {y} refl x>y = lift ( ∅8 y (o<-subst (c<→o< {n} {ord→od y} {x} (def-subst {n} {x} {y} x>y refl (sym diso))) ord-iso eq )) =→¬< : {x : Nat } → ¬ ( x < x ) =→¬< {Zero} () =→¬< {Suc x} (s≤s lt) = =→¬< lt >→¬< : {x y : Nat } → (x < y ) → ¬ ( y < x ) >→¬< (s≤s x<y) (s≤s y<x) = >→¬< x<y y<x c≤-refl : {n : Level} → ( x : OD {n} ) → x c≤ x c≤-refl x = case1 refl o<> : {n : Level } ( ox oy : Ordinal {n}) → ox o< oy → oy o< ox → ⊥ o<> ox oy (case1 x<y) (case1 y<x) = >→¬< x<y y<x o<> ox oy (case1 x<y) (case2 y<x) with d<→lv y<x ... | refl = =→¬< x<y o<> ox oy (case2 x<y) (case1 y<x) with d<→lv x<y ... | refl = =→¬< y<x o<> ox oy (case2 x<y) (case2 y<x) with d<→lv x<y ... | refl = trio<> x<y y<x o<¬≡ : {n : Level } ( ox oy : Ordinal {n}) → ox ≡ oy → ox o< oy → ⊥ o<¬≡ ox ox refl (case1 lt) = =→¬< lt o<¬≡ ox ox refl (case2 (s< lt)) = trio<≡ refl lt o<→o> : {n : Level} → { x y : OD {n} } → (x == y) → (od→ord x ) o< ( od→ord y) → ⊥ o<→o> {n} {x} {y} record { eq→ = xy ; eq← = yx } (case1 lt) with yx (def-subst {n} {ord→od (od→ord y)} {od→ord (ord→od (od→ord x))} (o<→c< (case1 lt )) oiso diso ) ... | oyx with o<¬≡ (od→ord x) (od→ord x) refl (c<→o< oyx ) ... | () o<→o> {n} {x} {y} record { eq→ = xy ; eq← = yx } (case2 lt) with yx (def-subst {n} {ord→od (od→ord y)} {od→ord (ord→od (od→ord x))} (o<→c< (case2 lt )) oiso diso ) ... | oyx with o<¬≡ (od→ord x) (od→ord x) refl (c<→o< oyx ) ... | () o<→¬== : {n : Level} → { x y : OD {n} } → (od→ord x ) o< ( od→ord y) → ¬ (x == y ) o<→¬== {n} {x} {y} lt eq = o<→o> eq lt o<→¬c> : {n : Level} → { x y : OD {n} } → (od→ord x ) o< ( od→ord y) → ¬ (y c< x ) o<→¬c> {n} {x} {y} olt clt = o<> (od→ord x) (od→ord y) olt (c<→o< clt ) where o≡→¬c< : {n : Level} → { x y : OD {n} } → (od→ord x ) ≡ ( od→ord y) → ¬ x c< y o≡→¬c< {n} {x} {y} oeq lt = o<¬≡ (od→ord x) (od→ord y) (orefl oeq ) (c<→o< lt) tri-c< : {n : Level} → Trichotomous _==_ (_c<_ {suc n}) tri-c< {n} x y with trio< {n} (od→ord x) (od→ord y) tri-c< {n} x y | tri< a ¬b ¬c = tri< (def-subst (o<→c< a) oiso diso) (o<→¬== a) ( o<→¬c> a ) tri-c< {n} x y | tri≈ ¬a b ¬c = tri≈ (o≡→¬c< b) (ord→== b) (o≡→¬c< (sym b)) tri-c< {n} x y | tri> ¬a ¬b c = tri> ( o<→¬c> c) (λ eq → o<→¬== c (eq-sym eq ) ) (def-subst (o<→c< c) oiso diso) c<> : {n : Level } { x y : OD {suc n}} → x c< y → y c< x → ⊥ c<> {n} {x} {y} x<y y<x with tri-c< x y c<> {n} {x} {y} x<y y<x | tri< a ¬b ¬c = ¬c y<x c<> {n} {x} {y} x<y y<x | tri≈ ¬a b ¬c = o<→o> b ( c<→o< x<y ) c<> {n} {x} {y} x<y y<x | tri> ¬a ¬b c = ¬a x<y ∅2 : {n : Level} → { x : OD {n} } → o∅ {n} o< od→ord x → ¬ ( x == od∅ {n} ) ∅2 {n} {x} lt record { eq→ = eq→ ; eq← = eq← } with ominimal (od→ord x ) lt ... | min with eq→ ( def-subst (o<→c< (Minimumo.min<x min)) oiso refl ) ... | () ∅0 : {n : Level} → { x : Ordinal {n} } → o∅ {n} o< x → ¬ ( ord→od x == od∅ {n} ) ∅0 {n} {x} lt record { eq→ = eq→ ; eq← = eq← } with ominimal x lt ... | min with eq→ (o<→c< (Minimumo.min<x min)) ... | () is-od∅ : {n : Level} → ( x : OD {suc n} ) → Dec ( x == od∅ {suc n} ) is-od∅ {n} x with trio< {n} (od→ord x) (o∅ {suc n}) is-od∅ {n} x | tri≈ ¬a b ¬c = yes ( ∅7 (orefl b) ) is-od∅ {n} x | tri< (case1 ()) ¬b ¬c is-od∅ {n} x | tri< (case2 ()) ¬b ¬c is-od∅ {n} x | tri> ¬a ¬b c = no ( ∅2 c ) is-∋ : {n : Level} → ( x y : OD {suc n} ) → Dec ( x ∋ y ) is-∋ {n} x y with tri-c< x y is-∋ {n} x y | tri< a ¬b ¬c = no ¬c is-∋ {n} x y | tri≈ ¬a b ¬c = no ¬c is-∋ {n} x y | tri> ¬a ¬b c = yes c is-o∅ : {n : Level} → ( x : Ordinal {suc n} ) → Dec ( x ≡ o∅ {suc n} ) is-o∅ {n} record { lv = Zero ; ord = (Φ .0) } = yes refl is-o∅ {n} record { lv = Zero ; ord = (OSuc .0 ord₁) } = no ( λ () ) is-o∅ {n} record { lv = (Suc lv₁) ; ord = ord } = no (λ()) open _∧_ ∅9 : {n : Level} → {x : OD {n} } → ¬ x == od∅ → o∅ o< od→ord x ∅9 {_} {x} not = ∅5 lemma where lemma : ¬ od→ord x ≡ o∅ lemma eq = not ( ∅7 eq ) OD→ZF : {n : Level} → ZF {suc (suc n)} {suc n} OD→ZF {n} = record { ZFSet = OD {suc n} ; _∋_ = _∋_ ; _≈_ = _==_ ; ∅ = od∅ ; _,_ = _,_ ; Union = Union ; Power = Power ; Select = Select ; Replace = Replace ; infinite = record { def = λ x → x ≡ record { lv = Suc Zero ; ord = ℵ Zero } } ; isZF = isZF } where Replace : OD {suc n} → (OD {suc n} → OD {suc n} ) → OD {suc n} Replace X ψ = sup-od ψ Select : OD {suc n} → (OD {suc n} → Set (suc n) ) → OD {suc n} Select X ψ = record { def = λ x → ( def X x ∧ ψ ( ord→od x )) } _,_ : OD {suc n} → OD {suc n} → OD {suc n} x , y = record { def = λ z → ( (z ≡ od→ord x ) ∨ ( z ≡ od→ord y )) } Union : OD {suc n} → OD {suc n} Union x = record { def = λ y → {z : Ordinal {suc n}} → def x z → def (ord→od z) y } Power : OD {suc n} → OD {suc n} Power x = record { def = λ y → (z : Ordinal {suc n} ) → ( def x y ∧ def (ord→od z) y ) } ZFSet = OD {suc n} _∈_ : ( A B : ZFSet ) → Set (suc n) A ∈ B = B ∋ A _⊆_ : ( A B : ZFSet ) → ∀{ x : ZFSet } → Set (suc n) _⊆_ A B {x} = A ∋ x → B ∋ x _∩_ : ( A B : ZFSet ) → ZFSet A ∩ B = Select (A , B) ( λ x → ( A ∋ x ) ∧ (B ∋ x) ) _∪_ : ( A B : ZFSet ) → ZFSet A ∪ B = Select (A , B) ( λ x → (A ∋ x) ∨ ( B ∋ x ) ) infixr 200 _∈_ infixr 230 _∩_ _∪_ infixr 220 _⊆_ isZF : IsZF (OD {suc n}) _∋_ _==_ od∅ _,_ Union Power Select Replace (record { def = λ x → x ≡ record { lv = Suc Zero ; ord = ℵ Zero } }) isZF = record { isEquivalence = record { refl = eq-refl ; sym = eq-sym; trans = eq-trans } ; pair = pair ; union→ = {!!} ; union← = {!!} ; empty = empty ; power→ = {!!} ; power← = {!!} ; extentionality = {!!} ; minimul = minimul ; regularity = regularity ; infinity∅ = {!!} ; infinity = {!!} ; selection = λ {ψ} {X} {y} → selection {ψ} {X} {y} ; replacement = {!!} } where open _∧_ open Minimumo pair : (A B : OD {suc n} ) → ((A , B) ∋ A) ∧ ((A , B) ∋ B) proj1 (pair A B ) = case1 refl proj2 (pair A B ) = case2 refl empty : (x : OD {suc n} ) → ¬ (od∅ ∋ x) empty x () union→ : (X x y : OD {suc n} ) → (X ∋ x) → (x ∋ y) → (Union X ∋ y) union→ X x y X∋x x∋y = {!!} where lemma : {z : Ordinal {suc n} } → def X z → z ≡ od→ord y lemma {z} X∋z = {!!} ψiso : {ψ : OD {suc n} → Set (suc n)} {x y : OD {suc n}} → ψ x → x ≡ y → ψ y ψiso {ψ} t refl = t selection : {ψ : OD → Set (suc n)} {X y : OD} → ((X ∋ y) ∧ ψ y) ⇔ (Select X ψ ∋ y) selection {ψ} {X} {y} = record { proj1 = λ cond → record { proj1 = proj1 cond ; proj2 = ψiso {ψ} (proj2 cond) (sym oiso) } ; proj2 = λ select → record { proj1 = proj1 select ; proj2 = ψiso {ψ} (proj2 select) oiso } } minord : (x : OD {suc n} ) → ¬ (x == od∅ )→ Minimumo (od→ord x) minord x not = ominimal (od→ord x) (∅9 not) minimul : (x : OD {suc n} ) → ¬ (x == od∅ )→ OD {suc n} minimul x not = ord→od ( mino (minord x not)) minimul<x : (x : OD {suc n} ) → (not : ¬ x == od∅ ) → x ∋ minimul x not minimul<x x not = lemma0 (min<x (minord x not)) where lemma0 : mino (minord x not) o< (od→ord x) → def x (od→ord (ord→od (mino (minord x not)))) lemma0 m<x = def-subst {suc n} {ord→od (od→ord x)} {od→ord (ord→od (mino (minord x not)))} (o<→c< m<x) oiso refl regularity-ord : (x : Ordinal ) (not : o∅ o< x ) → (ord→od x ∋ minimul (ord→od x) (∅0 not)) ∧ (Select (minimul (ord→od x) (∅0 not)) (λ x₁ → (minimul (ord→od x) (∅0 not) ∋ x₁) ∧ ((ord→od x) ∋ x₁)) == od∅) proj1 ( regularity-ord x non ) = minimul<x (ord→od x) (∅0 non) proj2 ( regularity-ord x non ) = reg1 where reg2 : {y : Ordinal} → ( def (minimul (ord→od x) (∅0 non)) y ∧ (minimul (ord→od x) (∅0 non) ∋ ord→od y) ∧ ((ord→od x) ∋ ord→od y) ) → ⊥ reg2 {y} t with proj1 t | proj1 (proj2 t) | proj2 (proj2 t) ... | p1 | p2 | p3 with is-∋ (ord→od x) ( ord→od y) reg2 {y} t | p1 | p2 | p3 | no ¬p = ⊥-elim (¬p p3 ) -- ¬ x ∋ ord→od y empty x case reg2 {y} t | p1 | p2 | p3 | yes p with is-∋ (minimul (ord→od x) (∅0 non)) (ord→od y) reg2 {y} t | p1 | p2 | p3 | yes p | no ¬p = ⊥-elim (¬p p2 ) -- minimum contains nothing q.e.d. reg2 {y} t | p1 | p2 | p3 | yes p | yes p₁ = {!!} reg0 : {y : Ordinal {suc n}} → Minimumo x → def (Select (minimul (ord→od x) (∅0 non)) (λ z → (minimul (ord→od x) (∅0 non) ∋ z) ∧ ((ord→od x) ∋ z))) y → def od∅ y reg0 {y} m t with trio< y (mino (minord (ord→od x) (∅0 non))) reg0 {y} m t | tri< a ¬b ¬c with reg2 {y} t ... | () reg0 {y} m t | tri≈ ¬a refl ¬c = lemma y ( mino (minord (ord→od x) (∅0 non)) ) refl (def-subst {suc n} {ord→od y} {mino (minord (ord→od x) (∅0 non))} (proj1 t) refl (sym diso)) where lemma : ( ox oy : Ordinal {suc n} ) → ox ≡ oy → ord→od ox c< ord→od oy → Lift (suc n) ⊥ lemma ox oy refl lt = lift ( o≡→¬c< {suc n} {ord→od oy} {ord→od oy} refl lt ) reg0 {y} m t | tri> ¬a ¬b c with o<> y (mino (minord (ord→od x) (∅0 non))) (lemma {!!}) c where lemma : def (ord→od (mino (ominimal x (∅5 (λ eq → (∅0 non) (∅7 {!!})))))) y → y o< mino (minord (ord→od x) (∅0 non)) lemma d with c<→o< {suc n} {ord→od y} {ord→od (mino (minord (ord→od x) (∅0 non)))} (def-subst {suc n} {ord→od (mino (minord (ord→od x) (∅0 non)))} {y} {!!} refl (sym diso)) lemma d | clt = o<-subst clt ord-iso ord-iso ... | () reg1 : Select (minimul (ord→od x) (∅0 non)) (λ x₁ → (minimul (ord→od x) (∅0 non) ∋ x₁) ∧ ((ord→od x) ∋ x₁)) == od∅ reg1 = record { eq→ = reg0 (ominimal x non) ; eq← = λ () } where ∅-iso : {x : OD} → ¬ (x == od∅) → ¬ ((ord→od (od→ord x)) == od∅) ∅-iso {x} neq = subst (λ k → ¬ k) (=-iso {n} ) neq where regularity : (x : OD) (not : ¬ (x == od∅)) → (x ∋ minimul x not) ∧ (Select (minimul x not) (λ x₁ → (minimul x not ∋ x₁) ∧ (x ∋ x₁)) == od∅) regularity x not with regularity-ord ( od→ord x ) ( ∅9 not ) ... | t = ?