Mercurial > hg > Members > kono > Proof > ZF-in-agda
view filter.agda @ 206:684d70f1f26b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 31 Jul 2019 17:48:08 +0900 |
parents | 0b9645a65542 |
children | 650bdad56729 |
line wrap: on
line source
open import Level open import OD open import zf open import ordinal module filter ( n : Level ) where open import Relation.Nullary open import Relation.Binary open import Data.Empty open import Relation.Binary open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) od = OD→ZF {n} record Filter {n : Level} ( P max : OD {suc n} ) : Set (suc (suc n)) where field _⊇_ : OD {suc n} → OD {suc n} → Set (suc n) G : OD {suc n} G∋1 : G ∋ max Gmax : { p : OD {suc n} } → P ∋ p → p ⊇ max Gless : { p q : OD {suc n} } → G ∋ p → P ∋ q → p ⊇ q → G ∋ q Gcompat : { p q : OD {suc n} } → G ∋ p → G ∋ q → ¬ ( ( r : OD {suc n}) → (( p ⊇ r ) ∧ ( p ⊇ r ))) dense : {n : Level} → Set (suc (suc n)) dense {n} = { D P p : OD {suc n} } → ({x : OD {suc n}} → P ∋ p → ¬ ( ( q : OD {suc n}) → D ∋ q → od→ord p o< od→ord q )) record NatFilter {n : Level} ( P : Nat → Set n) : Set (suc n) where field GN : Nat → Set n GN∋1 : GN 0 GNmax : { p : Nat } → P p → 0 ≤ p GNless : { p q : Nat } → GN p → P q → q ≤ p → GN q Gr : ( p q : Nat ) → GN p → GN q → Nat GNcompat : { p q : Nat } → (gp : GN p) → (gq : GN q ) → ( Gr p q gp gq ≤ p ) ∨ ( Gr p q gp gq ≤ q ) record NatDense {n : Level} ( P : Nat → Set n) : Set (suc n) where field Gmid : { p : Nat } → P p → Nat GDense : { D : Nat → Set n } → {x p : Nat } → (pp : P p ) → D (Gmid {p} pp) → Gmid pp ≤ p open OD.OD -- H(ω,2) = Power ( Power ω ) = Def ( Def ω)) Pred : {n : Level} ( Dom : OD {suc n} ) → OD {suc n} Pred {n} dom = record { def = λ x → def dom x → Set n } Hω2 : {n : Level} → OD {suc n} Hω2 {n} = record { def = λ x → {dom : Ordinal {suc n}} → x ≡ od→ord ( Pred ( ord→od dom )) } Hω2Filter : {n : Level} → Filter {n} Hω2 od∅ Hω2Filter {n} = record { _⊇_ = _⊇_ ; G = {!!} ; G∋1 = {!!} ; Gmax = {!!} ; Gless = {!!} ; Gcompat = {!!} } where P = Hω2 _⊇_ : OD {suc n} → OD {suc n} → Set (suc n) _⊇_ = {!!} G : OD {suc n} G = {!!} G∋1 : G ∋ od∅ G∋1 = {!!} Gmax : { p : OD {suc n} } → P ∋ p → p ⊇ od∅ Gmax = {!!} Gless : { p q : OD {suc n} } → G ∋ p → P ∋ q → p ⊇ q → G ∋ q Gless = {!!} Gcompat : { p q : OD {suc n} } → G ∋ p → G ∋ q → ¬ ( ( r : OD {suc n}) → (( p ⊇ r ) ∧ ( p ⊇ r ))) Gcompat = {!!}