Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 206:684d70f1f26b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 31 Jul 2019 17:48:08 +0900 |
parents | 61ff37d51230 |
children | 3e4eb4da1453 |
files | OD.agda |
diffstat | 1 files changed, 13 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Wed Jul 31 17:17:24 2019 +0900 +++ b/OD.agda Wed Jul 31 17:48:08 2019 +0900 @@ -564,7 +564,7 @@ a-choice : OD {suc n} is-in : X ∋ a-choice choice-func' : (X : OD {suc n} ) → (∋-p : (A x : OD {suc n} ) → Dec ( A ∋ x ) ) → ¬ ( X == od∅ ) → choiced X - choice-func' X ∋-p not = lemma0 + choice-func' X ∋-p not = have_to_find where <-not : {X : OD {suc n}} → ( ox : Ordinal {suc n}) → Set (suc n) <-not {X} ox = ( y : Ordinal {suc n}) → y o< ox → ¬ (X ∋ (ord→od y)) @@ -574,7 +574,14 @@ <-not {X} (record { lv = lx ; ord = Φ lx }) ∨ choiced X caseΦ lx prev with ∋-p X ( ord→od (ordinal lx (Φ lx) )) caseΦ lx prev | yes p = case2 ( record { a-choice = ord→od (ordinal lx (Φ lx)) ; is-in = p } ) - caseΦ lx prev | no ¬p = {!!} + caseΦ lx prev | no ¬p = lemma (ordinal lx (Φ lx)) <-osuc where + lemma : (x : Ordinal {suc n}) → x o< osuc (ordinal lx (Φ lx)) + → ((y : Ordinal) → (Suc (lv y) ≤ lx) ∨ (ord y d< Φ lx) → def X (od→ord (ord→od y)) → ⊥) ∨ choiced X + lemma x lt with osuc-≡< lt + lemma x lt | case1 refl = case1 ? + lemma x lt | case2 lt1 with prev x lt1 + lemma x lt | case2 lt1 | case1 lt2 = case1 {!!} + lemma x lt | case2 lt1 | case2 found = case2 found caseOSuc : (lx : Nat) (x : OrdinalD lx) → (<-not {X} (record { lv = lx ; ord = x }) ∨ choiced X) → <-not {X} (record { lv = lx ; ord = OSuc lx x }) ∨ choiced X caseOSuc lx x prev with ∋-p X (ord→od record { lv = lx ; ord = x } ) @@ -588,10 +595,10 @@ lemma y lt | tri> ¬a ¬b c | case1 refl = ⊥-elim ( ¬b refl ) lemma y lt | tri> ¬a ¬b c | case2 lt1 = ⊥-elim (o<> c lt1 ) caseOSuc lx x (case2 found) | no ¬p = case2 found - lemma0 : choiced X - lemma0 with lemma-ord (od→ord X ) - lemma0 | case1 not_found = ⊥-elim ( not ( record { + have_to_find : choiced X + have_to_find with lemma-ord (od→ord X ) + have_to_find | case1 not_found = ⊥-elim ( not ( record { eq→ = λ {x} lt → ⊥-elim (not_found x (def→o< lt) (def-subst {suc n} {_} {_} {X} {_} lt refl (sym diso ))) ; eq← = λ lt → ⊥-elim (¬x<0 lt) } ) ) - lemma0 | case2 found = found + have_to_find | case2 found = found