Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 207:3e4eb4da1453
try again ..
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 01 Aug 2019 00:13:07 +0900 |
parents | 684d70f1f26b |
children | 64ef1db53c49 |
files | OD.agda |
diffstat | 1 files changed, 11 insertions(+), 31 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Wed Jul 31 17:48:08 2019 +0900 +++ b/OD.agda Thu Aug 01 00:13:07 2019 +0900 @@ -566,39 +566,19 @@ choice-func' : (X : OD {suc n} ) → (∋-p : (A x : OD {suc n} ) → Dec ( A ∋ x ) ) → ¬ ( X == od∅ ) → choiced X choice-func' X ∋-p not = have_to_find where - <-not : {X : OD {suc n}} → ( ox : Ordinal {suc n}) → Set (suc n) - <-not {X} ox = ( y : Ordinal {suc n}) → y o< ox → ¬ (X ∋ (ord→od y)) - lemma-ord : ( ox : Ordinal {suc n} ) → <-not {X} ox ∨ choiced X - lemma-ord ox = TransFinite {n} {suc (suc n)} {λ ox → <-not {X} ox ∨ choiced X } caseΦ caseOSuc ox where - caseΦ : (lx : Nat) → ((x : Ordinal) → x o< ordinal lx (Φ lx) → <-not {X} x ∨ choiced X) → - <-not {X} (record { lv = lx ; ord = Φ lx }) ∨ choiced X + ψ : ( ox : Ordinal {suc n}) → Set (suc (suc n)) + ψ ox = ( x : Ordinal {suc n}) → x o< ox → ¬ (def X x ) ∨ choiced X + lemma-ord : ( ox : Ordinal {suc n} ) → ψ ox + lemma-ord ox = TransFinite {n} {suc (suc n)} {ψ} caseΦ caseOSuc ox where + caseΦ : (lx : Nat) → ( (x : Ordinal {suc n} ) → x o< ordinal lx (Φ lx) → ψ x) → ψ (ordinal lx (Φ lx) ) caseΦ lx prev with ∋-p X ( ord→od (ordinal lx (Φ lx) )) - caseΦ lx prev | yes p = case2 ( record { a-choice = ord→od (ordinal lx (Φ lx)) ; is-in = p } ) - caseΦ lx prev | no ¬p = lemma (ordinal lx (Φ lx)) <-osuc where - lemma : (x : Ordinal {suc n}) → x o< osuc (ordinal lx (Φ lx)) - → ((y : Ordinal) → (Suc (lv y) ≤ lx) ∨ (ord y d< Φ lx) → def X (od→ord (ord→od y)) → ⊥) ∨ choiced X - lemma x lt with osuc-≡< lt - lemma x lt | case1 refl = case1 ? - lemma x lt | case2 lt1 with prev x lt1 - lemma x lt | case2 lt1 | case1 lt2 = case1 {!!} - lemma x lt | case2 lt1 | case2 found = case2 found - caseOSuc : (lx : Nat) (x : OrdinalD lx) → (<-not {X} (record { lv = lx ; ord = x }) ∨ choiced X) → - <-not {X} (record { lv = lx ; ord = OSuc lx x }) ∨ choiced X + caseΦ lx prev | yes p = ? -- case2 ( record { a-choice = ord→od (ordinal lx (Φ lx)) ; is-in = p } ) + caseΦ lx prev | no ¬p = ? + caseOSuc : (lx : Nat) (x : OrdinalD lx) → ψ ( ordinal lx x ) → ψ ( ordinal lx (OSuc lx x) ) caseOSuc lx x prev with ∋-p X (ord→od record { lv = lx ; ord = x } ) - caseOSuc lx x prev | yes p = case2 (record { a-choice = ord→od record { lv = lx ; ord = x } ; is-in = p }) - caseOSuc lx x (case1 not_found) | no ¬p = case1 lemma where - lemma : (y : Ordinal) → (Suc (lv y) ≤ lx) ∨ (ord y d< OSuc lx x) → def X (od→ord (ord→od y)) → ⊥ - lemma y lt with trio< y (ordinal lx x ) - lemma y lt | tri< a ¬b ¬c = not_found y a - lemma y lt | tri≈ ¬a refl ¬c = ¬p - lemma y lt | tri> ¬a ¬b c with osuc-≡< lt - lemma y lt | tri> ¬a ¬b c | case1 refl = ⊥-elim ( ¬b refl ) - lemma y lt | tri> ¬a ¬b c | case2 lt1 = ⊥-elim (o<> c lt1 ) - caseOSuc lx x (case2 found) | no ¬p = case2 found + caseOSuc lx x prev | yes p = ? -- case2 (record { a-choice = ord→od record { lv = lx ; ord = x } ; is-in = p }) + caseOSuc lx x prev | no ¬p = ? have_to_find : choiced X have_to_find with lemma-ord (od→ord X ) - have_to_find | case1 not_found = ⊥-elim ( not ( record { - eq→ = λ {x} lt → ⊥-elim (not_found x (def→o< lt) (def-subst {suc n} {_} {_} {X} {_} lt refl (sym diso ))) ; - eq← = λ lt → ⊥-elim (¬x<0 lt) } ) ) - have_to_find | case2 found = found + have_to_find | t = ?