Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 208:64ef1db53c49
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 01 Aug 2019 08:28:20 +0900 |
parents | 3e4eb4da1453 |
children | e59e682ad120 |
files | OD.agda zf.agda |
diffstat | 2 files changed, 10 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Thu Aug 01 00:13:07 2019 +0900 +++ b/OD.agda Thu Aug 01 08:28:20 2019 +0900 @@ -567,18 +567,18 @@ choice-func' X ∋-p not = have_to_find where ψ : ( ox : Ordinal {suc n}) → Set (suc (suc n)) - ψ ox = ( x : Ordinal {suc n}) → x o< ox → ¬ (def X x ) ∨ choiced X + ψ ox = ( x : Ordinal {suc n}) → x o< ox → ( ¬ def X x ) ∨ choiced X lemma-ord : ( ox : Ordinal {suc n} ) → ψ ox lemma-ord ox = TransFinite {n} {suc (suc n)} {ψ} caseΦ caseOSuc ox where caseΦ : (lx : Nat) → ( (x : Ordinal {suc n} ) → x o< ordinal lx (Φ lx) → ψ x) → ψ (ordinal lx (Φ lx) ) caseΦ lx prev with ∋-p X ( ord→od (ordinal lx (Φ lx) )) - caseΦ lx prev | yes p = ? -- case2 ( record { a-choice = ord→od (ordinal lx (Φ lx)) ; is-in = p } ) - caseΦ lx prev | no ¬p = ? + caseΦ lx prev | yes p = {!!} -- case2 ( record { a-choice = ord→od (ordinal lx (Φ lx)) ; is-in = p } ) + caseΦ lx prev | no ¬p = {!!} caseOSuc : (lx : Nat) (x : OrdinalD lx) → ψ ( ordinal lx x ) → ψ ( ordinal lx (OSuc lx x) ) caseOSuc lx x prev with ∋-p X (ord→od record { lv = lx ; ord = x } ) - caseOSuc lx x prev | yes p = ? -- case2 (record { a-choice = ord→od record { lv = lx ; ord = x } ; is-in = p }) - caseOSuc lx x prev | no ¬p = ? + caseOSuc lx x prev | yes p = {!!} -- case2 (record { a-choice = ord→od record { lv = lx ; ord = x } ; is-in = p }) + caseOSuc lx x prev | no ¬p = {!!} have_to_find : choiced X have_to_find with lemma-ord (od→ord X ) - have_to_find | t = ? + have_to_find | t = dont-or ( t (od→ord X) {!!} ) {!!}
--- a/zf.agda Thu Aug 01 00:13:07 2019 +0900 +++ b/zf.agda Thu Aug 01 08:28:20 2019 +0900 @@ -37,6 +37,10 @@ de-morgan {n} {A} {B} and (case1 ¬A) = ⊥-elim ( ¬A ( _∧_.proj1 and )) de-morgan {n} {A} {B} and (case2 ¬B) = ⊥-elim ( ¬B ( _∧_.proj2 and )) +dont-or : {n m : Level} {A : Set n} { B : Set m } → A ∨ B → ¬ A → B +dont-or {A} {B} (case1 a) ¬A = ⊥-elim ( ¬A a ) +dont-or {A} {B} (case2 b) ¬A = b + -- mid-ex-neg : {n : Level } {A : Set n} → ( ¬ ¬ A ) ∨ (¬ A) -- mid-ex-neg {n} {A} = {!!}