Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 205:61ff37d51230
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 31 Jul 2019 17:17:24 +0900 |
parents | d4802eb159ff |
children | 684d70f1f26b |
files | OD.agda |
diffstat | 1 files changed, 34 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Wed Jul 31 15:29:51 2019 +0900 +++ b/OD.agda Wed Jul 31 17:17:24 2019 +0900 @@ -104,6 +104,9 @@ otrans : {n : Level} {a x y : Ordinal {n} } → def (Ord a) x → def (Ord x) y → def (Ord a) y otrans x<a y<x = ordtrans y<x x<a +def→o< : {n : Level } {X : OD {suc n}} → {x : Ordinal {suc n}} → def X x → x o< od→ord X +def→o< {n} {X} {x} lt = o<-subst {suc n} {_} {_} {x} {od→ord X} ( c<→o< ( def-subst {suc n} {X} {x} lt (sym oiso) (sym diso) )) diso diso + ∅3 : {n : Level} → { x : Ordinal {suc n}} → ( ∀(y : Ordinal {suc n}) → ¬ (y o< x ) ) → x ≡ o∅ {suc n} ∅3 {n} {x} = TransFinite {n} c2 c3 x where c0 : Nat → Ordinal {suc n} → Set (suc n) @@ -561,12 +564,34 @@ a-choice : OD {suc n} is-in : X ∋ a-choice choice-func' : (X : OD {suc n} ) → (∋-p : (A x : OD {suc n} ) → Dec ( A ∋ x ) ) → ¬ ( X == od∅ ) → choiced X - choice-func' X ∋-p not = {!!} where - lemma-ord : ( lx : Nat ) (ox : OrdinalD lx ) → {ly : Nat} → {oy : OrdinalD ly } - → ordinal ly oy o< ordinal lx ox → choiced X ∨ ( ¬ ( def X (ordinal ly oy) )) - lemma-ord lx (OSuc lx ox) y<x with ∋-p X (ord→od (ordinal lx (OSuc lx ox))) - lemma-ord lx (OSuc lx ox) y<x | yes p = case1 ( record { a-choice = (ord→od (ordinal lx (OSuc lx ox))) ; is-in = p } ) - lemma-ord lx (OSuc lx ox) y<x | no ¬p with osuc-≡< y<x - lemma-ord lx (OSuc lx ox) y<x | no ¬p | case1 refl = {!!} - lemma-ord lx (OSuc lx ox) y<x | no ¬p | case2 t = lemma-ord lx ox t - lemma-ord (Suc lx) (Φ (Suc lx)) (case1 x) = {!!} + choice-func' X ∋-p not = lemma0 + where + <-not : {X : OD {suc n}} → ( ox : Ordinal {suc n}) → Set (suc n) + <-not {X} ox = ( y : Ordinal {suc n}) → y o< ox → ¬ (X ∋ (ord→od y)) + lemma-ord : ( ox : Ordinal {suc n} ) → <-not {X} ox ∨ choiced X + lemma-ord ox = TransFinite {n} {suc (suc n)} {λ ox → <-not {X} ox ∨ choiced X } caseΦ caseOSuc ox where + caseΦ : (lx : Nat) → ((x : Ordinal) → x o< ordinal lx (Φ lx) → <-not {X} x ∨ choiced X) → + <-not {X} (record { lv = lx ; ord = Φ lx }) ∨ choiced X + caseΦ lx prev with ∋-p X ( ord→od (ordinal lx (Φ lx) )) + caseΦ lx prev | yes p = case2 ( record { a-choice = ord→od (ordinal lx (Φ lx)) ; is-in = p } ) + caseΦ lx prev | no ¬p = {!!} + caseOSuc : (lx : Nat) (x : OrdinalD lx) → (<-not {X} (record { lv = lx ; ord = x }) ∨ choiced X) → + <-not {X} (record { lv = lx ; ord = OSuc lx x }) ∨ choiced X + caseOSuc lx x prev with ∋-p X (ord→od record { lv = lx ; ord = x } ) + caseOSuc lx x prev | yes p = case2 (record { a-choice = ord→od record { lv = lx ; ord = x } ; is-in = p }) + caseOSuc lx x (case1 not_found) | no ¬p = case1 lemma where + lemma : (y : Ordinal) → (Suc (lv y) ≤ lx) ∨ (ord y d< OSuc lx x) → def X (od→ord (ord→od y)) → ⊥ + lemma y lt with trio< y (ordinal lx x ) + lemma y lt | tri< a ¬b ¬c = not_found y a + lemma y lt | tri≈ ¬a refl ¬c = ¬p + lemma y lt | tri> ¬a ¬b c with osuc-≡< lt + lemma y lt | tri> ¬a ¬b c | case1 refl = ⊥-elim ( ¬b refl ) + lemma y lt | tri> ¬a ¬b c | case2 lt1 = ⊥-elim (o<> c lt1 ) + caseOSuc lx x (case2 found) | no ¬p = case2 found + lemma0 : choiced X + lemma0 with lemma-ord (od→ord X ) + lemma0 | case1 not_found = ⊥-elim ( not ( record { + eq→ = λ {x} lt → ⊥-elim (not_found x (def→o< lt) (def-subst {suc n} {_} {_} {X} {_} lt refl (sym diso ))) ; + eq← = λ lt → ⊥-elim (¬x<0 lt) } ) ) + lemma0 | case2 found = found +