Mercurial > hg > Members > kono > Proof > ZF-in-agda
view ODC.agda @ 395:77c6123f49ee
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 27 Jul 2020 09:29:41 +0900 |
parents | 8b0715e28b33 |
children | 8c092c042093 |
line wrap: on
line source
{-# OPTIONS --allow-unsolved-metas #-} open import Level open import Ordinals module ODC {n : Level } (O : Ordinals {n} ) where open import zf open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary open import Relation.Binary.Core open import logic open import nat import OD open inOrdinal O open OD O open OD.OD open OD._==_ open ODAxiom odAxiom open HOD open _∧_ postulate -- mimimul and x∋minimal is an Axiom of choice minimal : (x : HOD ) → ¬ (x =h= od∅ )→ HOD -- this should be ¬ (x =h= od∅ )→ ∃ ox → x ∋ Ord ox ( minimum of x ) x∋minimal : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → odef x ( od→ord ( minimal x ne ) ) -- minimality (may proved by ε-induction with LEM) minimal-1 : (x : HOD ) → ( ne : ¬ (x =h= od∅ ) ) → (y : HOD ) → ¬ ( odef (minimal x ne) (od→ord y)) ∧ (odef x (od→ord y) ) -- -- Axiom of choice in intutionistic logic implies the exclude middle -- https://plato.stanford.edu/entries/axiom-choice/#AxiChoLog -- pred-od : ( p : Set n ) → HOD pred-od p = record { od = record { def = λ x → (x ≡ o∅) ∧ p } ; odmax = osuc o∅; <odmax = λ x → subst (λ k → k o< osuc o∅) (sym (proj1 x)) <-osuc } ppp : { p : Set n } { a : HOD } → pred-od p ∋ a → p ppp {p} {a} d = proj2 d p∨¬p : ( p : Set n ) → p ∨ ( ¬ p ) -- assuming axiom of choice p∨¬p p with is-o∅ ( od→ord (pred-od p )) p∨¬p p | yes eq = case2 (¬p eq) where ps = pred-od p eqo∅ : ps =h= od∅ → od→ord ps ≡ o∅ eqo∅ eq = subst (λ k → od→ord ps ≡ k) ord-od∅ ( cong (λ k → od→ord k ) (==→o≡ eq)) lemma : ps =h= od∅ → p → ⊥ lemma eq p0 = ¬x<0 {od→ord ps} (eq→ eq record { proj1 = eqo∅ eq ; proj2 = p0 } ) ¬p : (od→ord ps ≡ o∅) → p → ⊥ ¬p eq = lemma ( subst₂ (λ j k → j =h= k ) oiso o∅≡od∅ ( o≡→== eq )) p∨¬p p | no ¬p = case1 (ppp {p} {minimal ps (λ eq → ¬p (eqo∅ eq))} lemma) where ps = pred-od p eqo∅ : ps =h= od∅ → od→ord ps ≡ o∅ eqo∅ eq = subst (λ k → od→ord ps ≡ k) ord-od∅ ( cong (λ k → od→ord k ) (==→o≡ eq)) lemma : ps ∋ minimal ps (λ eq → ¬p (eqo∅ eq)) lemma = x∋minimal ps (λ eq → ¬p (eqo∅ eq)) decp : ( p : Set n ) → Dec p -- assuming axiom of choice decp p with p∨¬p p decp p | case1 x = yes x decp p | case2 x = no x ∋-p : (A x : HOD ) → Dec ( A ∋ x ) ∋-p A x with p∨¬p ( A ∋ x ) -- LEM ∋-p A x | case1 t = yes t ∋-p A x | case2 t = no (λ x → t x) double-neg-eilm : {A : Set n} → ¬ ¬ A → A -- we don't have this in intutionistic logic double-neg-eilm {A} notnot with decp A -- assuming axiom of choice ... | yes p = p ... | no ¬p = ⊥-elim ( notnot ¬p ) open _⊆_ power→⊆ : ( A t : HOD) → Power A ∋ t → t ⊆ A power→⊆ A t PA∋t = record { incl = λ {x} t∋x → double-neg-eilm (t1 t∋x) } where t1 : {x : HOD } → t ∋ x → ¬ ¬ (A ∋ x) t1 = zf.IsZF.power→ isZF A t PA∋t OrdP : ( x : Ordinal ) ( y : HOD ) → Dec ( Ord x ∋ y ) OrdP x y with trio< x (od→ord y) OrdP x y | tri< a ¬b ¬c = no ¬c OrdP x y | tri≈ ¬a refl ¬c = no ( o<¬≡ refl ) OrdP x y | tri> ¬a ¬b c = yes c open import zfc HOD→ZFC : ZFC HOD→ZFC = record { ZFSet = HOD ; _∋_ = _∋_ ; _≈_ = _=h=_ ; ∅ = od∅ ; Select = Select ; isZFC = isZFC } where -- infixr 200 _∈_ -- infixr 230 _∩_ _∪_ isZFC : IsZFC (HOD ) _∋_ _=h=_ od∅ Select isZFC = record { choice-func = choice-func ; choice = choice } where -- Axiom of choice ( is equivalent to the existence of minimal in our case ) -- ∀ X [ ∅ ∉ X → (∃ f : X → ⋃ X ) → ∀ A ∈ X ( f ( A ) ∈ A ) ] choice-func : (X : HOD ) → {x : HOD } → ¬ ( x =h= od∅ ) → ( X ∋ x ) → HOD choice-func X {x} not X∋x = minimal x not choice : (X : HOD ) → {A : HOD } → ( X∋A : X ∋ A ) → (not : ¬ ( A =h= od∅ )) → A ∋ choice-func X not X∋A choice X {A} X∋A not = x∋minimal A not