Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 395:77c6123f49ee
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 27 Jul 2020 09:29:41 +0900 |
parents | 65491783aa57 |
children | 8c092c042093 |
files | OD.agda generic-filter.agda |
diffstat | 2 files changed, 32 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- a/OD.agda Sun Jul 26 21:39:27 2020 +0900 +++ b/OD.agda Mon Jul 27 09:29:41 2020 +0900 @@ -495,6 +495,9 @@ ; proj2 = λ select → record { proj1 = proj1 select ; proj2 = ψiso {ψ} (proj2 select) oiso } } +selection-in-domain : {ψ : HOD → Set n} {X y : HOD} → Select X ψ ∋ y → X ∋ y +selection-in-domain {ψ} {X} {y} lt = proj1 ((proj2 (selection {ψ} {X} )) lt) + sup-c< : (ψ : HOD → HOD) → {X x : HOD} → X ∋ x → od→ord (ψ x) o< (sup-o X (λ y X∋y → od→ord (ψ (ord→od y)))) sup-c< ψ {X} {x} lt = subst (λ k → od→ord (ψ k) o< _ ) oiso (sup-o< X lt ) replacement← : {ψ : HOD → HOD} (X x : HOD) → X ∋ x → Replace X ψ ∋ ψ x
--- a/generic-filter.agda Sun Jul 26 21:39:27 2020 +0900 +++ b/generic-filter.agda Mon Jul 27 09:29:41 2020 +0900 @@ -124,6 +124,35 @@ ω→2f x lt n | yes p = i1 ω→2f x lt n | no ¬p = i0 +fω→2-sel : ( f : Nat → Two ) (x : HOD) → Set n +fω→2-sel f x = (infinite ∋ x) ∧ ( (lt : odef infinite (od→ord x) ) → f (ω→nat x lt) ≡ i1 ) + +fω→2 : (Nat → Two) → HOD +fω→2 f = Select infinite (fω→2-sel f) + +open _==_ + +postulate f-extensionality : { n m : Level} → Relation.Binary.PropositionalEquality.Extensionality n m + +ω2f : (f : Nat → Two) → ω→2 ∋ fω→2 f +ω2f f = power← infinite (fω→2 f) (λ {x} lt → proj1 ((proj2 (selection {fω→2-sel f} {infinite} )) lt)) + +ω→2f-iso : (X : HOD) → ( lt : ω→2 ∋ X ) → fω→2 ( ω→2f X lt ) =h= X +ω→2f-iso X lt = record { + eq→ = eq1 + ; eq← = eq2 + } where + eq1 : {x : Ordinal} → odef (fω→2 (ω→2f X lt)) x → odef X x + eq1 {x} fx = {!!} + eq2 : {x : Ordinal} → odef X x → odef (fω→2 (ω→2f X lt)) x + eq2 {x} Xx = {!!} + +fω→2-iso : (f : Nat → Two) → ω→2f ( fω→2 f ) (ω2f f) ≡ f +fω→2-iso f = f-extensionality (λ x → eq1 x ) where + eq1 : (x : Nat) → ω→2f (fω→2 f) (ω2f f) x ≡ f x + eq1 x = {!!} + + ↑n : (f n : HOD) → ((ω→2 ∋ f ) ∧ (infinite ∋ n)) → HOD ↑n f n lt = 3→Hω2 ( ω→2f f (proj1 lt) 3↑ (ω→nat n (proj2 lt) ))