Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 394:65491783aa57
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 26 Jul 2020 21:39:27 +0900 |
parents | 43b0a6ca7602 |
children | 77c6123f49ee |
files | generic-filter.agda |
diffstat | 1 files changed, 8 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- a/generic-filter.agda Sun Jul 26 21:10:37 2020 +0900 +++ b/generic-filter.agda Sun Jul 26 21:39:27 2020 +0900 @@ -86,18 +86,11 @@ HODω2 = record { od = record { def = λ x → Hω2r x } ; odmax = next o∅ ; <odmax = odmax0 } where P : (i j : Nat) (x : Ordinal ) → HOD P i j x = ((nat→ω i , nat→ω i) , (nat→ω i , nat→ω j)) , ord→od x - nat0 : (i : Nat) → od→ord (nat→ω i) o< next o∅ - nat0 i = <odmax infinite (ω∋nat→ω {i}) - lemma3 : (i j : Nat) → od→ord ((nat→ω i , nat→ω i) , (nat→ω i , nat→ω j)) o< next o∅ - lemma3 i j = pair-<xy (pair-<xy (nat0 i) (nat0 i) ) (pair-<xy (nat0 i) (nat0 j) ) + nat1 : (i : Nat) (x : Ordinal) → od→ord (nat→ω i) o< next x + nat1 i x = next< nexto∅ ( <odmax infinite (ω∋nat→ω {i})) lemma1 : (i j : Nat) (x : Ordinal ) → osuc (od→ord (P i j x)) o< next x - lemma1 i j x = osuc<nx ( next< lemma2 ho< ) where - lemma2 : odmax (((nat→ω i , nat→ω i) , (nat→ω i , nat→ω j)) , ord→od x) o< next x - lemma2 with trio< (od→ord ((nat→ω i , nat→ω i) , (nat→ω i , nat→ω j))) (od→ord (ord→od x)) - | inspect (omax (od→ord ((nat→ω i , nat→ω i) , (nat→ω i , nat→ω j)))) (od→ord (ord→od x)) - lemma2 | tri< a ¬b ¬c | _ = osuc<nx (subst (λ k → k o< next x ) (sym diso) x<nx ) - lemma2 | tri≈ ¬a b ¬c | record { eq = eq1 } = subst₂ (λ j k → j o< next k ) (trans (omax≡ _ _ b ) eq1 ) diso (osuc<nx x<nx) - lemma2 | tri> ¬a ¬b c | record { eq = eq1 } = osuc<nx ( next< nexto∅ (lemma3 i j)) + lemma1 i j x = osuc<nx (pair-<xy (pair-<xy (pair-<xy (nat1 i x) (nat1 i x) ) (pair-<xy (nat1 i x) (nat1 j x) ) ) + (subst (λ k → k o< next x) (sym diso) x<nx )) lemma : (i j : Nat) (x : Ordinal ) → od→ord (Union (P i j x)) o< next x lemma i j x = next< (lemma1 i j x ) ho< odmax0 : {y : Ordinal} → Hω2r y → y o< next o∅ @@ -124,19 +117,16 @@ lemma record { count = (Suc i) ; hω2 = (he hω3) } = nothing ∷ lemma record { count = i ; hω2 = hω3 } ω→2 : HOD -ω→2 = Replace (Power infinite) (λ p → Replace infinite (λ x → < x , repl p x > )) where - repl : HOD → HOD → HOD - repl p x with ODC.∋-p O p x - ... | yes _ = nat→ω 1 - ... | no _ = nat→ω 0 +ω→2 = Power infinite ω→2f : (x : HOD) → ω→2 ∋ x → Nat → Two -ω→2f x = {!!} +ω→2f x lt n with ODC.∋-p O x (nat→ω n) +ω→2f x lt n | yes p = i1 +ω→2f x lt n | no ¬p = i0 ↑n : (f n : HOD) → ((ω→2 ∋ f ) ∧ (infinite ∋ n)) → HOD ↑n f n lt = 3→Hω2 ( ω→2f f (proj1 lt) 3↑ (ω→nat n (proj2 lt) )) - record CountableOrdinal : Set (suc (suc n)) where field ctl→ : Nat → Ordinal