view src/Topology.agda @ 1101:7ce2cc622c92

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Wed, 28 Dec 2022 18:14:29 +0900
parents ce4f3f180b8e
children a9a7ad7784cc
line wrap: on
line source

open import Level
open import Ordinals
module Topology {n : Level } (O : Ordinals {n})   where

open import zf
open import logic
open _∧_
open _∨_
open Bool

import OD 
open import Relation.Nullary 
open import Data.Empty 
open import Relation.Binary.Core
open import Relation.Binary.PropositionalEquality
import BAlgbra 
open BAlgbra O
open inOrdinal O
open OD O
open OD.OD
open ODAxiom odAxiom
import OrdUtil
import ODUtil
open Ordinals.Ordinals  O
open Ordinals.IsOrdinals isOrdinal
open Ordinals.IsNext isNext
open OrdUtil O
open ODUtil O

import ODC
open ODC O

open import filter
open import OPair O


record Topology  ( L : HOD ) : Set (suc n) where
   field
       OS    : HOD
       OS⊆PL :  OS ⊆ Power L 
       o∪ : { P : HOD }  →  P  ⊆ OS           → OS ∋ Union P
       o∩ : { p q : HOD } → OS ∋ p →  OS ∋ q  → OS ∋ (p ∩ q)
-- closed Set
   CS : HOD
   CS = record { od = record { def = λ x → odef OS (& ( L \ (* x ))) } ; odmax = & L ; <odmax = tp02 } where
       tp02 : {y : Ordinal } → odef OS (& (L \ * y)) → y o< & L
       tp02 {y} nop = ?
       -- ∈∅< ( proj1 nop )

open Topology


record _covers_ ( P q : HOD  ) : Set (suc n) where
   field
       cover   : {x : HOD} → q ∋ x → HOD
       P∋cover : {x : HOD} → {lt : q ∋ x} → P ∋ cover lt
       isCover : {x : HOD} → {lt : q ∋ x} → cover lt ∋ x

-- Base
-- The elements of B cover X ; For any U , V ∈ B and any point x ∈ U ∩ V there is a W ∈ B such that 
-- W ⊆ U ∩ V and x ∈ W .

data genTop (P : HOD) : HOD → Set (suc n) where
   gi : {x : HOD} → P ∋ x → genTop P x
   g∩ : {x y : HOD} → genTop P x → genTop P y → genTop P (x ∩ y)
   g∪ : {Q x : HOD} → Q ⊆ P → genTop P (Union Q)

-- Limit point

record LP { L : HOD}  (top : Topology L) ( S x : HOD ) (S⊆PL :  S ⊆ Power L ) ( S∋x : S ∋ x ) : Set (suc n) where
   field
      neip   : {y : HOD} → OS top ∋ y → y ∋ x → HOD
      isNeip : {y : HOD} → (o∋y : OS top ∋ y ) → (y∋x : y ∋ x ) → ¬ ( x ≡ neip o∋y y∋x) ∧ ( y ∋ neip o∋y y∋x )
       
-- Finite Intersection Property

data Finite-∩ (S : HOD) : HOD → Set (suc n) where
   fin-e : {x : HOD} → S ∋ x → Finite-∩ S x
   fin-∩ : {x y : HOD} → Finite-∩ S x → Finite-∩ S y → Finite-∩ S (x ∩ y)

record FIP {L : HOD} (top : Topology L)  ( P : HOD ) : Set (suc n) where
   field
       fipS⊆PL :  P ⊆ CS top
       fip≠φ : { x : HOD } → Finite-∩ P x → ¬ ( x ≡ od∅ )

-- Compact

data Finite-∪ (S : HOD) : HOD → Set (suc n) where
   fin-e : {x : HOD} → S ∋ x → Finite-∪ S x
   fin-∪  : {x y : HOD} → Finite-∪ S x → Finite-∪ S y → Finite-∪ S (x ∪ y)

record Compact  {L : HOD} (top : Topology L) ( P : HOD ) : Set (suc n) where
   field
       finCover        : {X : HOD} → X ⊆ OS top → X covers P → HOD
       isFinCover      : {X : HOD} → (xo : X ⊆ OS top) → (xcp : X covers P ) → (finCover xo xcp ) covers P
       isFiniteCover   : {X : HOD} → (xo : X ⊆ OS top) → (xcp : X covers P ) → Finite-∪ X (finCover xo xcp  )

-- FIP is Compact

FIP→Compact : {L P : HOD} → (top : Topology L ) → FIP top P → Compact top P
FIP→Compact {L} {P} TL fip = record { finCover = ? ; isFinCover = ? ; isFiniteCover = ? }

Compact→FIP : {L P : HOD} → (top : Topology L ) → Compact top P → FIP top P
Compact→FIP = {!!}

-- Product Topology

open ZFProduct 

_Top⊗_ : {P Q : HOD} → Topology P → Topology Q → Topology (ZFP P Q)
_Top⊗_ {P} {Q} TP TQ = record {
       OS    = POS
    ;  OS⊆PL = ?
    ;  o∪ = ?
    ;  o∩ = ?
  } where
      box : HOD
      box = ZFP (OS TP) (OS TQ) 
      POS : HOD
      POS = ?

-- existence of Ultra Filter 

-- Ultra Filter has limit point

-- FIP is UFL

-- Product of UFL has limit point (Tychonoff)