Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1101:7ce2cc622c92
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 28 Dec 2022 18:14:29 +0900 |
parents | c90eec304cfa |
children | a9a7ad7784cc |
files | src/Topology.agda src/cardinal.agda src/generic-filter.agda src/zorn.agda |
diffstat | 4 files changed, 41 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Mon Dec 26 14:00:57 2022 +0900 +++ b/src/Topology.agda Wed Dec 28 18:14:29 2022 +0900 @@ -31,6 +31,8 @@ open ODC O open import filter +open import OPair O + record Topology ( L : HOD ) : Set (suc n) where field @@ -38,9 +40,16 @@ OS⊆PL : OS ⊆ Power L o∪ : { P : HOD } → P ⊆ OS → OS ∋ Union P o∩ : { p q : HOD } → OS ∋ p → OS ∋ q → OS ∋ (p ∩ q) +-- closed Set + CS : HOD + CS = record { od = record { def = λ x → odef OS (& ( L \ (* x ))) } ; odmax = & L ; <odmax = tp02 } where + tp02 : {y : Ordinal } → odef OS (& (L \ * y)) → y o< & L + tp02 {y} nop = ? + -- ∈∅< ( proj1 nop ) open Topology + record _covers_ ( P q : HOD ) : Set (suc n) where field cover : {x : HOD} → q ∋ x → HOD @@ -58,7 +67,7 @@ -- Limit point -record LP ( L S x : HOD ) (top : Topology L) (S⊆PL : S ⊆ Power L ) ( S∋x : S ∋ x ) : Set (suc n) where +record LP { L : HOD} (top : Topology L) ( S x : HOD ) (S⊆PL : S ⊆ Power L ) ( S∋x : S ∋ x ) : Set (suc n) where field neip : {y : HOD} → OS top ∋ y → y ∋ x → HOD isNeip : {y : HOD} → (o∋y : OS top ∋ y ) → (y∋x : y ∋ x ) → ¬ ( x ≡ neip o∋y y∋x) ∧ ( y ∋ neip o∋y y∋x ) @@ -66,38 +75,49 @@ -- Finite Intersection Property data Finite-∩ (S : HOD) : HOD → Set (suc n) where - fin-∩e : {x : HOD} → S ∋ x → Finite-∩ S x - fin-∩ : {x y : HOD} → Finite-∩ S x → Finite-∩ S y → Finite-∩ S (x ∩ y) + fin-e : {x : HOD} → S ∋ x → Finite-∩ S x + fin-∩ : {x y : HOD} → Finite-∩ S x → Finite-∩ S y → Finite-∩ S (x ∩ y) -record FIP ( L P : HOD ) : Set (suc n) where +record FIP {L : HOD} (top : Topology L) ( P : HOD ) : Set (suc n) where field - fipS⊆PL : P ⊆ Power L + fipS⊆PL : P ⊆ CS top fip≠φ : { x : HOD } → Finite-∩ P x → ¬ ( x ≡ od∅ ) -- Compact data Finite-∪ (S : HOD) : HOD → Set (suc n) where - fin-∪e : {x : HOD} → S ∋ x → Finite-∪ S x + fin-e : {x : HOD} → S ∋ x → Finite-∪ S x fin-∪ : {x y : HOD} → Finite-∪ S x → Finite-∪ S y → Finite-∪ S (x ∪ y) -record Compact ( L P : HOD ) : Set (suc n) where +record Compact {L : HOD} (top : Topology L) ( P : HOD ) : Set (suc n) where field - finCover : {X y : HOD} → X covers P → P ∋ y → HOD - isFinCover : {X y : HOD} → (xp : X covers P ) → (P∋y : P ∋ y ) → finCover xp P∋y ∋ y - isFininiteCover : {X y : HOD} → (xp : X covers P ) → (P∋y : P ∋ y ) → Finite-∪ X (finCover xp P∋y ) + finCover : {X : HOD} → X ⊆ OS top → X covers P → HOD + isFinCover : {X : HOD} → (xo : X ⊆ OS top) → (xcp : X covers P ) → (finCover xo xcp ) covers P + isFiniteCover : {X : HOD} → (xo : X ⊆ OS top) → (xcp : X covers P ) → Finite-∪ X (finCover xo xcp ) -- FIP is Compact -FIP→Compact : {L P : HOD} → Topology L → FIP L P → Compact L P -FIP→Compact = {!!} +FIP→Compact : {L P : HOD} → (top : Topology L ) → FIP top P → Compact top P +FIP→Compact {L} {P} TL fip = record { finCover = ? ; isFinCover = ? ; isFiniteCover = ? } -Compact→FIP : {L P : HOD} → Topology L → Compact L P → FIP L P +Compact→FIP : {L P : HOD} → (top : Topology L ) → Compact top P → FIP top P Compact→FIP = {!!} -- Product Topology -_Top⊗_ : {P Q : HOD} → Topology P → Topology Q → Topology {!!} -_Top⊗_ = {!!} +open ZFProduct + +_Top⊗_ : {P Q : HOD} → Topology P → Topology Q → Topology (ZFP P Q) +_Top⊗_ {P} {Q} TP TQ = record { + OS = POS + ; OS⊆PL = ? + ; o∪ = ? + ; o∩ = ? + } where + box : HOD + box = ZFP (OS TP) (OS TQ) + POS : HOD + POS = ? -- existence of Ultra Filter
--- a/src/cardinal.agda Mon Dec 26 14:00:57 2022 +0900 +++ b/src/cardinal.agda Wed Dec 28 18:14:29 2022 +0900 @@ -46,12 +46,12 @@ -- A ⊗ B = Union ( Replace B (λ b → Replace A (λ a → < a , b > ) )) Func : OD -Func = record { def = λ x → def ZFProduct x +Func = record { def = λ x → def ZFPair x ∧ ( (a b c : Ordinal) → odef (* x) (& < * a , * b >) ∧ odef (* x) (& < * a , * c >) → b ≡ c ) } FuncP : ( A B : HOD ) → HOD FuncP A B = record { od = record { def = λ x → odef (ZFP A B) x - ∧ ( (x : Ordinal ) (p q : odef (ZFP A B ) x ) → pi1 (proj1 p) ≡ pi1 (proj1 q) → pi2 (proj1 p) ≡ pi2 (proj1 q) ) } + ∧ ( (x : Ordinal ) (p q : odef (ZFP A B ) x ) → pi1 ? ≡ pi1 ? → pi2 ? ≡ pi2 ? ) } ; odmax = odmax (ZFP A B) ; <odmax = λ lt → <odmax (ZFP A B) (proj1 lt) } record Injection (A B : Ordinal ) : Set n where
--- a/src/generic-filter.agda Mon Dec 26 14:00:57 2022 +0900 +++ b/src/generic-filter.agda Wed Dec 28 18:14:29 2022 +0900 @@ -236,7 +236,9 @@ → (LP : L ⊆ Power P ) → (Lp0 : L ∋ p ) → ( {q : HOD} → (Lq : L ∋ q ) → NonAtomic L q Lq ) → ¬ ( (ctl-M C) ∋ filter ( genf ( P-GenericFilter P L p LP Lp0 C )) ) -lemma232 P L p C LP Lp0 NA MG = {!!} +lemma232 P L p C LP Lp0 NA MG = {!!} where + D : HOD -- P - G + D = ? -- -- val x G = { val y G | ∃ p → G ∋ p → x ∋ < y , p > }
--- a/src/zorn.agda Mon Dec 26 14:00:57 2022 +0900 +++ b/src/zorn.agda Wed Dec 28 18:14:29 2022 +0900 @@ -1109,6 +1109,7 @@ ... | tri< a ¬b ¬c = ⊥-elim ( ¬x<0 a ) ... | tri≈ ¬a x=0 ¬c = record { supf = λ _ → MinSUP.sup (ysup f mf ay) ; asupf = MinSUP.as (ysup f mf ay) ; supf-mono = λ _ → o≤-refl ; zo≤sz = zo≤sz ; is-minsup = is-minsup ; cfcs = λ a<b b≤0 → ⊥-elim ( ¬x<0 (subst (λ k → _ o< k ) x=0 (ordtrans<-≤ a<b b≤0))) } where + -- initial case mf : ≤-monotonic-f A f mf x ax = ⟪ case2 mf00 , proj2 (mf< x ax ) ⟫ where