Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1102:a9a7ad7784cc
fix topology
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 29 Dec 2022 10:54:03 +0900 |
parents | 7ce2cc622c92 |
children | 8df83228d148 |
files | src/Topology.agda |
diffstat | 1 files changed, 63 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/src/Topology.agda Wed Dec 28 18:14:29 2022 +0900 +++ b/src/Topology.agda Thu Dec 29 10:54:03 2022 +0900 @@ -30,7 +30,7 @@ import ODC open ODC O -open import filter +open import filter O open import OPair O @@ -78,10 +78,10 @@ fin-e : {x : HOD} → S ∋ x → Finite-∩ S x fin-∩ : {x y : HOD} → Finite-∩ S x → Finite-∩ S y → Finite-∩ S (x ∩ y) -record FIP {L : HOD} (top : Topology L) ( P : HOD ) : Set (suc n) where +record FIP {L : HOD} (top : Topology L) : Set (suc n) where field - fipS⊆PL : P ⊆ CS top - fip≠φ : { x : HOD } → Finite-∩ P x → ¬ ( x ≡ od∅ ) + fipS⊆PL : L ⊆ CS top + fip≠φ : { x : HOD } → Finite-∩ L x → ¬ ( x ≡ od∅ ) -- Compact @@ -89,24 +89,40 @@ fin-e : {x : HOD} → S ∋ x → Finite-∪ S x fin-∪ : {x y : HOD} → Finite-∪ S x → Finite-∪ S y → Finite-∪ S (x ∪ y) -record Compact {L : HOD} (top : Topology L) ( P : HOD ) : Set (suc n) where +record Compact {L : HOD} (top : Topology L) : Set (suc n) where field - finCover : {X : HOD} → X ⊆ OS top → X covers P → HOD - isFinCover : {X : HOD} → (xo : X ⊆ OS top) → (xcp : X covers P ) → (finCover xo xcp ) covers P - isFiniteCover : {X : HOD} → (xo : X ⊆ OS top) → (xcp : X covers P ) → Finite-∪ X (finCover xo xcp ) + finCover : {X : HOD} → X ⊆ OS top → X covers L → HOD + isCover : {X : HOD} → (xo : X ⊆ OS top) → (xcp : X covers L ) → (finCover xo xcp ) covers L + isFinite : {X : HOD} → (xo : X ⊆ OS top) → (xcp : X covers L ) → Finite-∪ X (finCover xo xcp ) -- FIP is Compact -FIP→Compact : {L P : HOD} → (top : Topology L ) → FIP top P → Compact top P -FIP→Compact {L} {P} TL fip = record { finCover = ? ; isFinCover = ? ; isFiniteCover = ? } +FIP→Compact : {L : HOD} → (top : Topology L ) → FIP top → Compact top +FIP→Compact {L} TL fip = record { finCover = ? ; isCover = ? ; isFinite = ? } -Compact→FIP : {L P : HOD} → (top : Topology L ) → Compact top P → FIP top P +Compact→FIP : {L : HOD} → (top : Topology L ) → Compact top → FIP top Compact→FIP = {!!} -- Product Topology open ZFProduct +record BaseP {P : HOD} (TP : Topology P ) (Q : HOD) (x : Ordinal) : Set n where + field + p : Ordinal + q : Ordinal + op : odef (OS TP) p + qq : odef Q q + prod : x ≡ & < * p , * q > + +record BaseQ (P : HOD) {Q : HOD} (TQ : Topology Q ) (x : Ordinal) : Set n where + field + p : Ordinal + q : Ordinal + oq : odef (OS TQ) q + pp : odef P p + prod : x ≡ & < * p , * q > + _Top⊗_ : {P Q : HOD} → Topology P → Topology Q → Topology (ZFP P Q) _Top⊗_ {P} {Q} TP TQ = record { OS = POS @@ -114,16 +130,48 @@ ; o∪ = ? ; o∩ = ? } where - box : HOD - box = ZFP (OS TP) (OS TQ) - POS : HOD - POS = ? + box : HOD + box = ZFP (OS TP) (OS TQ) + -- B : (OS P ∋ x → proj⁻¹ x ) ∨ (OS Q ∋ y → proj⁻¹ y ) + -- U ⊂ ZFP P Q ∧ ( U ∋ ∀ x → B ∋ ∃ b → b ∋ x ∧ b ⊂ U ) + base : HOD + base = record { od = record { def = λ x → BaseP TP Q x ∨ BaseQ P TQ x } ; odmax = & (ZFP P Q) ; <odmax = ? } + POS : HOD + POS = record { od = record { def = λ x → {b : Ordinal } → odef (Power base) b ∧ odef (Union (* b)) x } + ; odmax = & (ZFP P Q) ; <odmax = ? } -- existence of Ultra Filter +open Filter + -- Ultra Filter has limit point +record UFLP {P : HOD} (TP : Topology P) {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) (uf : ultra-filter {L} {P} {LP} F) : Set (suc (suc n)) where + field + limit : Ordinal + P∋limit : odef P limit + is-limit : {o : Ordinal} → odef (OS TP) o → odef (* o) limit → (* o) ⊆ filter F + -- FIP is UFL +FIP→UFLP : {P : HOD} (TP : Topology P) → FIP TP + → {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) (uf : ultra-filter {L} {P} {LP} F) → UFLP TP LP F uf +FIP→UFLP {P} TP fip {L} LP F uf = record { limit = ? ; P∋limit = ? ; is-limit = ? } + +UFLP→FIP : {P : HOD} (TP : Topology P) → + ( {L : HOD} (LP : L ⊆ Power P ) (F : Filter LP ) (uf : ultra-filter {L} {P} {LP} F) → UFLP TP LP F uf ) → FIP TP +UFLP→FIP {P} TP uflp = record { fipS⊆PL = ? ; fip≠φ = ? } + -- Product of UFL has limit point (Tychonoff) +Tychonoff : {P Q : HOD } → (TP : Topology P) → (TQ : Topology Q) → Compact TP → Compact TQ → Compact (TP Top⊗ TQ) +Tychonoff {P} {Q} TP TQ CP CQ = FIP→Compact (TP Top⊗ TQ) (UFLP→FIP (TP Top⊗ TQ) uflp ) where + uflp : {L : HOD} (LP : L ⊆ Power (ZFP P Q)) (F : Filter LP) + (uf : ultra-filter {L} {_} {LP} F) → UFLP (TP Top⊗ TQ) LP F uf + uflp {L} LP F uf = record { limit = ? ; P∋limit = ? ; is-limit = ? } + + + + + +