Mercurial > hg > Members > kono > Proof > ZF-in-agda
view Todo @ 1439:900c98ffde05
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 04 Jul 2023 09:28:09 +0900 |
parents | f4dac8be0a01 |
children | 171c3f3cdc6b |
line wrap: on
line source
Sat May 13 10:51:35 JST 2023 use Filter (ZFP (Proj1 (ZFP PQ)) (Proj2 (ZFP PQ)) for projection of Ultra filter tranfinite induciton on well-founded set Sat Aug 1 13:16:53 JST 2020 P Generic Filter as a ZF model define Definition for L Tue Jul 23 11:02:50 JST 2019 define cardinals ... done prove CH in OD→ZF define Ultra filter ... done define L M : ZF ZFSet = M is an OD define L N : ZF ZFSet = N = G M (G is a generic fitler on M ) prove ¬ CH on L N prove no choice function on L N Mon Jul 8 19:43:37 JST 2019 ordinal-definable.agda assumes all ZF Set are ordinals, that it too restrictive ... fixed remove ord-Ord and prove with some assuption in HOD.agda union, power set, replace, inifinite