Mercurial > hg > Members > kono > Proof > ZF-in-agda
view src/ODUtil.agda @ 1270:905311ffe7ec
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 26 Mar 2023 17:18:45 +0900 |
parents | 8a071bf52407 |
children | 45cd80181a29 |
line wrap: on
line source
{-# OPTIONS --allow-unsolved-metas #-} open import Level open import Ordinals module ODUtil {n : Level } (O : Ordinals {n} ) where open import zf open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import Data.Nat.Properties open import Data.Empty open import Relation.Nullary open import Relation.Binary hiding ( _⇔_ ) open import logic open import nat open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal open Ordinals.IsNext isNext import OrdUtil open OrdUtil O import OD open OD O open OD.OD open ODAxiom odAxiom open HOD open _∧_ open _==_ _⊂_ : ( A B : HOD) → Set n _⊂_ A B = ( & A o< & B) ∧ ( A ⊆ B ) ⊆∩-dist : {a b c : HOD} → a ⊆ b → a ⊆ c → a ⊆ ( b ∩ c ) ⊆∩-dist {a} {b} {c} a<b a<c {z} az = ⟪ a<b az , a<c az ⟫ ⊆∩-incl-1 : {a b c : HOD} → a ⊆ c → ( a ∩ b ) ⊆ c ⊆∩-incl-1 {a} {b} {c} a<c {z} ab = a<c (proj1 ab) ⊆∩-incl-2 : {a b c : HOD} → a ⊆ c → ( b ∩ a ) ⊆ c ⊆∩-incl-2 {a} {b} {c} a<c {z} ab = a<c (proj2 ab) cseq : HOD → HOD cseq x = record { od = record { def = λ y → odef x (osuc y) } ; odmax = osuc (odmax x) ; <odmax = lemma } where lemma : {y : Ordinal} → def (od x) (osuc y) → y o< osuc (odmax x) lemma {y} lt = ordtrans <-osuc (ordtrans (<odmax x lt) <-osuc ) ∩-comm : { A B : HOD } → (A ∩ B) ≡ (B ∩ A) ∩-comm {A} {B} = ==→o≡ record { eq← = λ {x} lt → ⟪ proj2 lt , proj1 lt ⟫ ; eq→ = λ {x} lt → ⟪ proj2 lt , proj1 lt ⟫ } _∪_ : ( A B : HOD ) → HOD A ∪ B = record { od = record { def = λ x → odef A x ∨ odef B x } ; odmax = omax (odmax A) (odmax B) ; <odmax = lemma } where lemma : {y : Ordinal} → odef A y ∨ odef B y → y o< omax (odmax A) (odmax B) lemma {y} (case1 a) = ordtrans (<odmax A a) (omax-x _ _) lemma {y} (case2 b) = ordtrans (<odmax B b) (omax-y _ _) x∪x≡x : { A : HOD } → (A ∪ A) ≡ A x∪x≡x {A} = ==→o≡ record { eq← = λ {x} lt → case1 lt ; eq→ = lem00 } where lem00 : {x : Ordinal} → odef A x ∨ odef A x → odef A x lem00 {x} (case1 ax) = ax lem00 {x} (case2 ax) = ax _\_ : ( A B : HOD ) → HOD A \ B = record { od = record { def = λ x → odef A x ∧ ( ¬ ( odef B x ) ) }; odmax = odmax A ; <odmax = λ y → <odmax A (proj1 y) } ¬∅∋ : {x : HOD} → ¬ ( od∅ ∋ x ) ¬∅∋ {x} = ¬x<0 pair-xx<xy : {x y : HOD} → & (x , x) o< osuc (& (x , y) ) pair-xx<xy {x} {y} = ⊆→o≤ lemma where lemma : {z : Ordinal} → def (od (x , x)) z → def (od (x , y)) z lemma {z} (case1 refl) = case1 refl lemma {z} (case2 refl) = case1 refl pair-<xy : {x y : HOD} → {n : Ordinal} → & x o< next n → & y o< next n → & (x , y) o< next n pair-<xy {x} {y} {o} x<nn y<nn with trio< (& x) (& y) | inspect (omax (& x)) (& y) ... | tri< a ¬b ¬c | record { eq = eq1 } = next< (subst (λ k → k o< next o ) (sym eq1) (osuc<nx y<nn)) ho< ... | tri> ¬a ¬b c | record { eq = eq1 } = next< (subst (λ k → k o< next o ) (sym eq1) (osuc<nx x<nn)) ho< ... | tri≈ ¬a b ¬c | record { eq = eq1 } = next< (subst (λ k → k o< next o ) (omax≡ _ _ b) (subst (λ k → osuc k o< next o) b (osuc<nx x<nn))) ho< -- another form of infinite -- pair-ord< : {x : Ordinal } → Set n pair-ord< : {x : HOD } → ( {y : HOD } → & y o< next (odmax y) ) → & ( x , x ) o< next (& x) pair-ord< {x} ho< = subst (λ k → & (x , x) o< k ) lemmab0 lemmab1 where lemmab0 : next (odmax (x , x)) ≡ next (& x) lemmab0 = trans (cong (λ k → next k) (omxx _)) (sym nexto≡) lemmab1 : & (x , x) o< next ( odmax (x , x)) lemmab1 = ho< trans-⊆ : { A B C : HOD} → A ⊆ B → B ⊆ C → A ⊆ C trans-⊆ A⊆B B⊆C ab = B⊆C (A⊆B ab) trans-⊂ : { A B C : HOD} → A ⊂ B → B ⊂ C → A ⊂ C trans-⊂ ⟪ A<B , A⊆B ⟫ ⟪ B<C , B⊆C ⟫ = ⟪ ordtrans A<B B<C , (λ ab → B⊆C (A⊆B ab)) ⟫ refl-⊆ : {A : HOD} → A ⊆ A refl-⊆ x = x od⊆→o≤ : {x y : HOD } → x ⊆ y → & x o< osuc (& y) od⊆→o≤ {x} {y} lt = ⊆→o≤ {x} {y} (λ {z} x>z → subst (λ k → def (od y) k ) &iso (lt (d→∋ x x>z))) ⊆→= : {F U : HOD} → F ⊆ U → U ⊆ F → F =h= U ⊆→= {F} {U} FU UF = record { eq→ = λ {x} lt → subst (λ k → odef U k) &iso (FU (subst (λ k → odef F k) (sym &iso) lt) ) ; eq← = λ {x} lt → subst (λ k → odef F k) &iso (UF (subst (λ k → odef U k) (sym &iso) lt) ) } ¬A∋x→A≡od∅ : (A : HOD) → {x : HOD} → A ∋ x → ¬ ( & A ≡ o∅ ) ¬A∋x→A≡od∅ A {x} ax a=0 = ¬x<0 ( subst (λ k → & x o< k) a=0 (c<→o< ax )) subset-lemma : {A x : HOD } → ( {y : HOD } → x ∋ y → (A ∩ x ) ∋ y ) ⇔ ( x ⊆ A ) subset-lemma {A} {x} = record { proj1 = λ lt x∋z → subst (λ k → odef A k ) &iso ( proj1 (lt (subst (λ k → odef x k) (sym &iso) x∋z ) )) ; proj2 = λ x⊆A lt → ⟪ x⊆A lt , lt ⟫ } ω<next-o∅ : {y : Ordinal} → infinite-d y → y o< next o∅ ω<next-o∅ {y} lt = <odmax infinite lt nat→ω : Nat → HOD nat→ω Zero = od∅ nat→ω (Suc y) = Union (nat→ω y , (nat→ω y , nat→ω y)) ω→nato : {y : Ordinal} → infinite-d y → Nat ω→nato iφ = Zero ω→nato (isuc lt) = Suc (ω→nato lt) ω→nat : (n : HOD) → infinite ∋ n → Nat ω→nat n = ω→nato ω∋nat→ω : {n : Nat} → def (od infinite) (& (nat→ω n)) ω∋nat→ω {Zero} = subst (λ k → def (od infinite) k) (sym ord-od∅) iφ ω∋nat→ω {Suc n} = subst (λ k → def (od infinite) k) lemma (isuc ( ω∋nat→ω {n})) where lemma : & (Union (* (& (nat→ω n)) , (* (& (nat→ω n)) , * (& (nat→ω n))))) ≡ & (nat→ω (Suc n)) lemma = subst (λ k → & (Union (k , ( k , k ))) ≡ & (nat→ω (Suc n))) (sym *iso) refl pair1 : { x y : HOD } → (x , y ) ∋ x pair1 = case1 refl pair2 : { x y : HOD } → (x , y ) ∋ y pair2 = case2 refl single : {x y : HOD } → (x , x ) ∋ y → x ≡ y single (case1 eq) = ==→o≡ ( ord→== (sym eq) ) single (case2 eq) = ==→o≡ ( ord→== (sym eq) ) single& : {x y : Ordinal } → odef (* x , * x ) y → x ≡ y single& (case1 eq) = sym (trans eq &iso) single& (case2 eq) = sym (trans eq &iso) open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ ) -- postulate f-extensionality : { n m : Level} → HE.Extensionality n m pair=∨ : {a b c : Ordinal } → odef (* a , * b) c → ( a ≡ c ) ∨ ( b ≡ c ) pair=∨ {a} {b} {c} (case1 c=a) = case1 ( sym (trans c=a &iso)) pair=∨ {a} {b} {c} (case2 c=b) = case2 ( sym (trans c=b &iso)) ω-prev-eq1 : {x y : Ordinal} → & (Union (* y , (* y , * y))) ≡ & (Union (* x , (* x , * x))) → ¬ (x o< y) ω-prev-eq1 {x} {y} eq x<y with eq→ (ord→== eq) record { owner = & (* y , * y) ; ao = case2 refl ; ox = subst (λ k → odef k (& (* y))) (sym *iso) (case1 refl) } -- (* x , (* x , * x)) ∋ * y ... | record { owner = u ; ao = xxx∋u ; ox = uy } with xxx∋u ... | case1 u=x = ⊥-elim ( o<> x<y (osucprev (begin osuc y ≡⟨ sym (cong osuc &iso) ⟩ osuc (& (* y)) ≤⟨ osucc (c<→o< {* y} {* u} uy) ⟩ -- * x ≡ * u ∋ * y & (* u) ≡⟨ &iso ⟩ u ≡⟨ u=x ⟩ & (* x) ≡⟨ &iso ⟩ x ∎ ))) where open o≤-Reasoning O ... | case2 u=xx = ⊥-elim (o<¬≡ ( begin x ≡⟨ single& (subst₂ (λ j k → odef j k ) (begin * u ≡⟨ cong (*) u=xx ⟩ * (& (* x , * x)) ≡⟨ *iso ⟩ (* x , * x ) ∎ ) &iso uy ) ⟩ -- (* x , * x ) ∋ * y y ∎ ) x<y) where open ≡-Reasoning ω-prev-eq : {x y : Ordinal} → & (Union (* y , (* y , * y))) ≡ & (Union (* x , (* x , * x))) → x ≡ y ω-prev-eq {x} {y} eq with trio< x y ω-prev-eq {x} {y} eq | tri< a ¬b ¬c = ⊥-elim (ω-prev-eq1 eq a) ω-prev-eq {x} {y} eq | tri≈ ¬a b ¬c = b ω-prev-eq {x} {y} eq | tri> ¬a ¬b c = ⊥-elim (ω-prev-eq1 (sym eq) c) ω-∈s : (x : HOD) → Union ( x , (x , x)) ∋ x ω-∈s x = record { owner = & ( x , x ) ; ao = case2 refl ; ox = subst₂ (λ j k → odef j k ) (sym *iso) refl (case2 refl) } ωs≠0 : (x : HOD) → ¬ ( Union ( x , (x , x)) ≡ od∅ ) ωs≠0 y eq = ⊥-elim ( ¬x<0 (subst (λ k → & y o< k ) ord-od∅ (c<→o< (subst (λ k → odef k (& y )) eq (ω-∈s y) ))) ) nat→ω-iso : {i : HOD} → (lt : infinite ∋ i ) → nat→ω ( ω→nat i lt ) ≡ i nat→ω-iso {i} = ε-induction {λ i → (lt : infinite ∋ i ) → nat→ω ( ω→nat i lt ) ≡ i } ind i where ind : {x : HOD} → ({y : HOD} → x ∋ y → (lt : infinite ∋ y) → nat→ω (ω→nat y lt) ≡ y) → (lt : infinite ∋ x) → nat→ω (ω→nat x lt) ≡ x ind {x} prev lt = ind1 lt *iso where ind1 : {ox : Ordinal } → (ltd : infinite-d ox ) → * ox ≡ x → nat→ω (ω→nato ltd) ≡ x ind1 {o∅} iφ refl = sym o∅≡od∅ ind1 (isuc {x₁} ltd) ox=x = begin nat→ω (ω→nato (isuc ltd) ) ≡⟨⟩ Union (nat→ω (ω→nato ltd) , (nat→ω (ω→nato ltd) , nat→ω (ω→nato ltd))) ≡⟨ cong (λ k → Union (k , (k , k ))) lemma ⟩ Union (* x₁ , (* x₁ , * x₁)) ≡⟨ trans ( sym *iso) ox=x ⟩ x ∎ where open ≡-Reasoning lemma0 : x ∋ * x₁ lemma0 = subst (λ k → odef k (& (* x₁))) (trans (sym *iso) ox=x) record { owner = & ( * x₁ , * x₁ ) ; ao = case2 refl ; ox = subst (λ k → odef k (& (* x₁))) (sym *iso) (case1 refl) } lemma1 : infinite ∋ * x₁ lemma1 = subst (λ k → odef infinite k) (sym &iso) ltd lemma3 : {x y : Ordinal} → (ltd : infinite-d x ) (ltd1 : infinite-d y ) → y ≡ x → ltd ≅ ltd1 lemma3 iφ iφ refl = HE.refl lemma3 iφ (isuc {y} ltd1) eq = ⊥-elim ( ¬x<0 (subst₂ (λ j k → j o< k ) &iso eq (c<→o< (ω-∈s (* y)) ))) lemma3 (isuc {y} ltd) iφ eq = ⊥-elim ( ¬x<0 (subst₂ (λ j k → j o< k ) &iso (sym eq) (c<→o< (ω-∈s (* y)) ))) lemma3 (isuc {x} ltd) (isuc {y} ltd1) eq with lemma3 ltd ltd1 (ω-prev-eq (sym eq)) ... | t = HE.cong₂ (λ j k → isuc {j} k ) (HE.≡-to-≅ (ω-prev-eq eq)) t lemma2 : {x y : Ordinal} → (ltd : infinite-d x ) (ltd1 : infinite-d y ) → y ≡ x → ω→nato ltd ≡ ω→nato ltd1 lemma2 {x} {y} ltd ltd1 eq = lemma6 eq (lemma3 {x} {y} ltd ltd1 eq) where lemma6 : {x y : Ordinal} → {ltd : infinite-d x } {ltd1 : infinite-d y } → y ≡ x → ltd ≅ ltd1 → ω→nato ltd ≡ ω→nato ltd1 lemma6 refl HE.refl = refl lemma : nat→ω (ω→nato ltd) ≡ * x₁ lemma = trans (cong (λ k → nat→ω k) (lemma2 {x₁} {_} ltd (subst (λ k → infinite-d k ) (sym &iso) ltd) &iso ) ) ( prev {* x₁} lemma0 lemma1 ) ω→nat-iso0 : (x : Nat) → {ox : Ordinal } → (ltd : infinite-d ox) → * ox ≡ nat→ω x → ω→nato ltd ≡ x ω→nat-iso0 Zero iφ eq = refl ω→nat-iso0 (Suc x) iφ eq = ⊥-elim ( ωs≠0 _ (trans (sym eq) o∅≡od∅ )) ω→nat-iso0 Zero (isuc ltd) eq = ⊥-elim ( ωs≠0 _ (subst (λ k → k ≡ od∅ ) *iso eq )) ω→nat-iso0 (Suc i) (isuc {x} ltd) eq = cong Suc ( ω→nat-iso0 i ltd (lemma1 eq) ) where lemma1 : * (& (Union (* x , (* x , * x)))) ≡ Union (nat→ω i , (nat→ω i , nat→ω i)) → * x ≡ nat→ω i lemma1 eq = subst (λ k → * x ≡ k ) *iso (cong (λ k → * k) ( ω-prev-eq (subst (λ k → _ ≡ k ) &iso (cong (λ k → & k ) (sym (subst (λ k → _ ≡ Union ( k , ( k , k ))) (sym *iso ) eq )))))) ω→nat-iso : {i : Nat} → ω→nat ( nat→ω i ) (ω∋nat→ω {i}) ≡ i ω→nat-iso {i} = ω→nat-iso0 i (ω∋nat→ω {i}) *iso Repl⊆ : {A B : HOD} (A⊆B : A ⊆ B) → { ψa : ( x : HOD) → A ∋ x → HOD } { ψb : ( x : HOD) → B ∋ x → HOD } → ( {z : Ordinal } → (az : odef A z ) → (ψa (* z) (subst (odef A) (sym &iso) az) ≡ ψb (* z) (subst (odef B) (sym &iso) (A⊆B az)))) → Replace' A ψa ⊆ Replace' B ψb Repl⊆ {A} {B} A⊆B {ψa} {ψb} eq record { z = z ; az = az ; x=ψz = x=ψz } = record { z = z ; az = A⊆B az ; x=ψz = trans x=ψz (cong (&) (eq az) ) } PPP : {P : HOD} → Power P ∋ P PPP {P} z pz = subst (λ k → odef k z ) *iso pz UPower⊆Q : {P Q : HOD} → P ⊆ Q → Union (Power P) ⊆ Q UPower⊆Q {P} {Q} P⊆Q {z} record { owner = y ; ao = ppy ; ox = yz } = P⊆Q (ppy _ yz) UPower∩ : {P : HOD} → ({ p q : HOD } → P ∋ p → P ∋ q → P ∋ (p ∩ q)) → { p q : HOD } → Union (Power P) ∋ p → Union (Power P) ∋ q → Union (Power P) ∋ (p ∩ q) UPower∩ {P} each {p} {q} record { owner = x ; ao = ppx ; ox = xz } record { owner = y ; ao = ppy ; ox = yz } = record { owner = & P ; ao = PPP ; ox = lem03 } where lem03 : odef (* (& P)) (& (p ∩ q)) lem03 = subst (λ k → odef k (& (p ∩ q))) (sym *iso) ( each (ppx _ xz) (ppy _ yz) ) -- ∋-irr : {X x : HOD} → (a b : X ∋ x ) → a ≡ b -- ∋-irr {X} {x} _ _ = refl -- is requed in Replace∩ : {X P Q : HOD} → {ψ : (x : HOD) → X ∋ x → HOD} → (P⊆X : P ⊆ X) → (Q⊆X : Q ⊆ X ) → ( {x : HOD} → (a b : X ∋ x ) → ψ x a ≡ ψ x b ) → (Replace' (P ∩ Q) (λ _ pq → ψ _ (P⊆X (proj1 pq )))) ⊆ ( Replace' P (λ _ p → ψ _ (P⊆X p)) ∩ Replace' Q (λ _ q → ψ _ (Q⊆X q))) Replace∩ {X} {P} {Q} {ψ} P⊆X Q⊆X ψ-irr = lem04 where lem04 : {x : Ordinal} → OD.def (od (Replace' (P ∩ Q) (λ z pq → ψ z (P⊆X (proj1 pq)) ))) x → OD.def (od (Replace' P (λ z p → ψ z (P⊆X p)) ∩ Replace' Q (λ z q → ψ z (Q⊆X q)))) x lem04 {x} record { z = z ; az = az ; x=ψz = x=ψz } = ⟪ record { z = _ ; az = proj1 az ; x=ψz = trans x=ψz (cong (&)(ψ-irr _ _)) } , record { z = _ ; az = proj2 az ; x=ψz = trans x=ψz (cong (&)(ψ-irr _ _)) } ⟫