Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 1270:905311ffe7ec
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 26 Mar 2023 17:18:45 +0900 |
parents | 0a8b6bb9652c |
children | dc5abc7b8473 |
files | src/generic-filter.agda |
diffstat | 1 files changed, 28 insertions(+), 57 deletions(-) [+] |
line wrap: on
line diff
--- a/src/generic-filter.agda Thu Mar 23 11:22:43 2023 +0900 +++ b/src/generic-filter.agda Sun Mar 26 17:18:45 2023 +0900 @@ -177,7 +177,7 @@ ---- -- Generic Filter on L ⊆ Power P from HOD's Countable Ordinal (G ⊆ Power P ≡ G i.e. ℕ → P → Set ) -- --- p 0 ≡ ∅ +-- p 0 ≡ p0 -- p (suc n) = if ∃ q ∈ M ∧ p n ⊆ q → q (by axiom of choice) ( q = * ( ctl→ n ) ) --- else p n @@ -336,49 +336,37 @@ -- -- --- in D, we have V ≠ L +-- val x G = { val y G | ∃ p → G ∋ p → x ∋ < y , p > } +-- +-- We can define the valuation, but to use this, we need V=L, which makes things complicated. -- - -val< : {x y p : Ordinal} → odef (* x) ( & < * y , * p > ) → y o< x -val< {x} {y} {p} xyp = osucprev ( begin - osuc y ≤⟨ osucc (odef< (subst (λ k → odef (* y , * y) k) &iso (v00 _ _ ) )) ⟩ - & (* y , * y) <⟨ c<→o< (v01 _ _) ⟩ - & < * y , * p > <⟨ odef< xyp ⟩ - & (* x) ≡⟨ &iso ⟩ - x ∎ ) where - v00 : (x y : HOD) → odef (x , y) (& x) - v00 _ _ = case1 refl - v01 : (x y : HOD) → < x , y > ∋ (x , x) - v01 _ _ = case1 refl - open o≤-Reasoning O - -record valS (G : HOD) (x z : Ordinal) (val : (y : Ordinal) → y o< x → HOD): Set n where - field - y p : Ordinal - G∋p : odef G p - is-val : odef (* x) ( & < * y , * p > ) - z=valy : z ≡ & (val y (val< is-val)) - z<x : z o< x - -record valT (G : HOD) (z : Ordinal) : Set n where - field - val : Ordinal → Ordinal - is-val : {x y p : Ordinal } → x o< z → odef G p → odef (* x) (& ( < * y , * p > )) → odef (* (val x)) (val y) - -valZ : (G M : HOD) → valT G (& M) -valZ G M = TransFinite0 {λ x → valT G x} pind (& M) where - pind : (x : Ordinal) → ((y : Ordinal) → y o< x → valT G y) → valT G x - pind x prev = record { val = ? ; is-val = ? } +-- val : (x : HOD) → (G : HOD) → HOD +-- val x G = TransFinite {λ x → HOD } ind (& x) where +-- ind : (x : Ordinal) → (valy : (y : Ordinal) → y o< x → HOD) → HOD +-- ind x valy = record { od = record { def = λ z → valS G x z valy } ; odmax = x ; <odmax = v02 } where +-- v02 : {z : Ordinal} → valS G x z valy → z o< x +-- v02 {z} lt = valS.z<x lt -- --- val x G = { val y G | ∃ p → G ∋ p → x ∋ < y , p > } +-- What we nedd +-- M[G] : HOD +-- M ⊆ M[G] +-- M[G] ∋ G +-- M[G] ∋ ∪G +-- L of M ≡ L of M[G] +-- L is a countable subset of Power ω i.e. Power ω ∩ M -- -val : (x : HOD) → (G : HOD) → HOD -val x G = TransFinite {λ x → HOD } ind (& x) where - ind : (x : Ordinal) → (valy : (y : Ordinal) → y o< x → HOD) → HOD - ind x valy = record { od = record { def = λ z → valS G x z valy } ; odmax = x ; <odmax = v02 } where - v02 : {z : Ordinal} → valS G x z valy → z o< x - v02 {z} lt = valS.z<x lt +-- Generic Filter is a countable sequence of element of M +-- Mg is set of all elementns of M which contains an element of G +-- +-- Mg : HOD +-- Mg + +record Mg {L P : HOD} (LP : L ⊆ Power P) (M : HOD) (G : GenericFilter {L} {P} LP M) (x : Ordinal) : Set n where + field + gi : Ordinal + G∋gi : odef (⊆-Ideal.ideal (genf G)) gi + x∋gi : odef (* x) gi TCS : (G : HOD) → Set (Level.suc n) TCS G = {x y : HOD} → G ∋ x → x ∋ y → G ∋ y @@ -387,20 +375,3 @@ → (C : CountableModel ) → HOD GH P L p0 LPP Lp0 C = ⊆-Ideal.ideal (genf ( P-GenericFilter P L p0 LPP Lp0 C )) --- M ∋ x ∧ val x G ∋ val y G → M ∋ y - -lemma233 : (P L p0 : HOD ) → (LPP : L ⊆ Power P) → (Lp0 : L ∋ p0 ) - → (C : CountableModel ) - → {x y : HOD } → ctl-M C ∋ x - → val x (GH P L p0 LPP Lp0 C) ∋ val y (GH P L p0 LPP Lp0 C) - → ctl-M C ∋ y -lemma233 P L p0 LPP Lp0 C {x} {y} Mx vx∋vy = ? where - M = ctl-M C - G = ⊆-Ideal.ideal (genf ( P-GenericFilter P L p0 LPP Lp0 C )) - pind : (x : Ordinal) → ((z : Ordinal) → - z o< x → odef M z → odef (val (* z) G) (& (val y G)) → M ∋ y) → - odef M x → odef (val (* x) G) (& (val y G)) → M ∋ y - pind x prev Mx vxvy = ? - lm00 : (x : Ordinal) → odef M x → odef (val (* x) G) (& (val y G)) → M ∋ y - lm00 x Mx vgvy = TransFinite0 {λ x → odef M x → odef (val (* x) G) (& (val y G)) → M ∋ y} pind x Mx vgvy -