Mercurial > hg > Members > kono > Proof > ZF-in-agda
view filter.agda @ 293:9972bd4a0d6f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 14 Jun 2020 08:57:14 +0900 |
parents | 773e03dfd6ed |
children | 4340ffcfa83d |
line wrap: on
line source
open import Level open import Ordinals module filter {n : Level } (O : Ordinals {n}) where open import zf open import logic import OD open import Relation.Nullary open import Relation.Binary open import Data.Empty open import Relation.Binary open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) import BAlgbra open BAlgbra O open inOrdinal O open OD O open OD.OD open ODAxiom odAxiom open _∧_ open _∨_ open Bool -- Kunen p.76 and p.53 record Filter ( L : OD ) : Set (suc n) where field filter : OD f⊆PL : filter ⊆ Power L filter1 : { p q : OD } → q ⊆ L → filter ∋ p → p ⊆ q → filter ∋ q filter2 : { p q : OD } → filter ∋ p → filter ∋ q → filter ∋ (p ∩ q) open Filter -- should use inhabit? proper-filter : {L : OD} → (P : Filter L ) → {p : OD} → Set n proper-filter {L} P {p} = ¬ (filter P ∋ od∅) prime-filter : {L : OD} → Filter L → ∀ {p q : OD } → Set n prime-filter {L} P {p} {q} = filter P ∋ ( p ∪ q) → ( filter P ∋ p ) ∨ ( filter P ∋ q ) ultra-filter : {L : OD} → Filter L → ∀ {p : OD } → Set (suc n ) ultra-filter {L} P {p} = p ⊆ L → ( filter P ∋ p ) ∨ ( filter P ∋ ( L \ p) ) filter-lemma1 : {L : OD} → (P : Filter L) → ∀ {p q : OD } → ( ∀ (p : OD ) → ultra-filter {L} P {p} ) → prime-filter {L} P {p} {q} filter-lemma1 {L} P {p} {q} u lt with lt ... | t = {!!} filter-lemma2 : {L : OD} → (P : Filter L) → ( ∀ {p q : OD } → prime-filter {L} P {p} {q}) → ∀ (p : OD ) → ultra-filter {L} P {p} filter-lemma2 {L} P prime p = {!!} generated-filter : {L : OD} → Filter L → (p : OD ) → Filter ( record { def = λ x → def L x ∨ (x ≡ od→ord p) } ) generated-filter {L} P p = {!!} record Dense (P : OD ) : Set (suc n) where field dense : OD incl : dense ⊆ P dense-f : OD → OD dense-p : { p : OD} → P ∋ p → p ⊆ (dense-f p) -- H(ω,2) = Power ( Power ω ) = Def ( Def ω)) infinite = ZF.infinite OD→ZF module in-countable-ordinal {n : Level} where import ordinal -- open ordinal.C-Ordinal-with-choice Hω2 : Filter (Power (Power infinite)) Hω2 = {!!} record Ideal ( L : OD ) : Set (suc n) where field ideal : OD i⊆PL : ideal ⊆ Power L ideal1 : { p q : OD } → q ⊆ L → ideal ∋ p → q ⊆ p → ideal ∋ q ideal2 : { p q : OD } → ideal ∋ p → ideal ∋ q → ideal ∋ (p ∪ q) open Ideal proper-ideal : {L : OD} → (P : Ideal L ) → {p : OD} → Set n proper-ideal {L} P {p} = ideal P ∋ od∅ prime-ideal : {L : OD} → Ideal L → ∀ {p q : OD } → Set n prime-ideal {L} P {p} {q} = ideal P ∋ ( p ∩ q) → ( ideal P ∋ p ) ∨ ( ideal P ∋ q )