Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 293:9972bd4a0d6f
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 14 Jun 2020 08:57:14 +0900 |
parents | 773e03dfd6ed |
children | 4340ffcfa83d |
files | filter.agda |
diffstat | 1 files changed, 28 insertions(+), 38 deletions(-) [+] |
line wrap: on
line diff
--- a/filter.agda Sat Jun 13 15:59:10 2020 +0900 +++ b/filter.agda Sun Jun 14 08:57:14 2020 +0900 @@ -13,6 +13,9 @@ open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) +import BAlgbra + +open BAlgbra O open inOrdinal O open OD O @@ -23,16 +26,6 @@ open _∨_ open Bool -_∩_ : ( A B : OD ) → OD -A ∩ B = record { def = λ x → def A x ∧ def B x } - -_∪_ : ( A B : OD ) → OD -A ∪ B = record { def = λ x → def A x ∨ def B x } - -_\_ : ( A B : OD ) → OD -A \ B = record { def = λ x → def A x ∧ ( ¬ ( def B x ) ) } - - -- Kunen p.76 and p.53 record Filter ( L : OD ) : Set (suc n) where field @@ -43,44 +36,25 @@ open Filter +-- should use inhabit? proper-filter : {L : OD} → (P : Filter L ) → {p : OD} → Set n -proper-filter {L} P {p} = filter P ∋ L +proper-filter {L} P {p} = ¬ (filter P ∋ od∅) prime-filter : {L : OD} → Filter L → ∀ {p q : OD } → Set n prime-filter {L} P {p} {q} = filter P ∋ ( p ∪ q) → ( filter P ∋ p ) ∨ ( filter P ∋ q ) -record Ideal ( L : OD ) : Set (suc n) where - field - ideal : OD - i⊆PL : ideal ⊆ Power L - ideal1 : { p q : OD } → q ⊆ L → ideal ∋ p → q ⊆ p → ideal ∋ q - ideal2 : { p q : OD } → ideal ∋ p → ideal ∋ q → ideal ∋ (p ∪ q) - -open Ideal - -proper-ideal : {L : OD} → (P : Ideal L ) → {p : OD} → Set n -proper-ideal {L} P {p} = ideal P ∋ od∅ - -prime-ideal : {L : OD} → Ideal L → ∀ {p q : OD } → Set n -prime-ideal {L} P {p} {q} = ideal P ∋ ( p ∩ q) → ( ideal P ∋ p ) ∨ ( ideal P ∋ q ) - - -ultra-filter : {L : OD} → Filter L → ∀ {p : OD } → Set n -ultra-filter {L} P {p} = L ∋ p → ( filter P ∋ p ) ∨ ( filter P ∋ ( L \ p) ) - +ultra-filter : {L : OD} → Filter L → ∀ {p : OD } → Set (suc n ) +ultra-filter {L} P {p} = p ⊆ L → ( filter P ∋ p ) ∨ ( filter P ∋ ( L \ p) ) filter-lemma1 : {L : OD} → (P : Filter L) → ∀ {p q : OD } → ( ∀ (p : OD ) → ultra-filter {L} P {p} ) → prime-filter {L} P {p} {q} -filter-lemma1 {L} P {p} {q} u lt = {!!} - -filter-lemma2 : {L : OD} → (P : Filter L) → ( ∀ {p q : OD } → prime-filter {L} P {p} {q}) → ∀ (p : OD ) → ultra-filter {L} P {p} -filter-lemma2 {L} P prime p with prime {!!} +filter-lemma1 {L} P {p} {q} u lt with lt ... | t = {!!} +filter-lemma2 : {L : OD} → (P : Filter L) → ( ∀ {p q : OD } → prime-filter {L} P {p} {q}) → ∀ (p : OD ) → ultra-filter {L} P {p} +filter-lemma2 {L} P prime p = {!!} + generated-filter : {L : OD} → Filter L → (p : OD ) → Filter ( record { def = λ x → def L x ∨ (x ≡ od→ord p) } ) -generated-filter {L} P p = record { - filter = {!!} ; - filter1 = {!!} ; filter2 = {!!} - } +generated-filter {L} P p = {!!} record Dense (P : OD ) : Set (suc n) where field @@ -102,3 +76,19 @@ Hω2 : Filter (Power (Power infinite)) Hω2 = {!!} + +record Ideal ( L : OD ) : Set (suc n) where + field + ideal : OD + i⊆PL : ideal ⊆ Power L + ideal1 : { p q : OD } → q ⊆ L → ideal ∋ p → q ⊆ p → ideal ∋ q + ideal2 : { p q : OD } → ideal ∋ p → ideal ∋ q → ideal ∋ (p ∪ q) + +open Ideal + +proper-ideal : {L : OD} → (P : Ideal L ) → {p : OD} → Set n +proper-ideal {L} P {p} = ideal P ∋ od∅ + +prime-ideal : {L : OD} → Ideal L → ∀ {p q : OD } → Set n +prime-ideal {L} P {p} {q} = ideal P ∋ ( p ∩ q) → ( ideal P ∋ p ) ∨ ( ideal P ∋ q ) +