Mercurial > hg > Members > kono > Proof > ZF-in-agda
view LEMC.agda @ 322:a9d380378efd
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 03 Jul 2020 22:54:45 +0900 |
parents | 5de8905a5a2b |
children | 0faa7120e4b5 |
line wrap: on
line source
open import Level open import Ordinals open import logic open import Relation.Nullary module LEMC {n : Level } (O : Ordinals {n} ) (p∨¬p : ( p : Set (suc n)) → p ∨ ( ¬ p )) where open import zf open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ ) open import Relation.Binary.PropositionalEquality open import Data.Nat.Properties open import Data.Empty open import Relation.Binary open import Relation.Binary.Core open import nat import OD open inOrdinal O open OD O open OD.OD open OD._==_ open ODAxiom odAxiom open import zfc --- With assuption of OD is ordered, p ∨ ( ¬ p ) <=> axiom of choice --- record choiced ( X : OD) : Set (suc n) where field a-choice : OD is-in : X ∋ a-choice open choiced OD→ZFC : ZFC OD→ZFC = record { ZFSet = OD ; _∋_ = _∋_ ; _≈_ = _==_ ; ∅ = od∅ ; Select = Select ; isZFC = isZFC } where -- infixr 200 _∈_ -- infixr 230 _∩_ _∪_ isZFC : IsZFC (OD ) _∋_ _==_ od∅ Select isZFC = record { choice-func = λ A {X} not A∋X → a-choice (choice-func X not ); choice = λ A {X} A∋X not → is-in (choice-func X not) } where choice-func : (X : OD ) → ¬ ( X == od∅ ) → choiced X choice-func X not = have_to_find where ψ : ( ox : Ordinal ) → Set (suc n) ψ ox = (( x : Ordinal ) → x o< ox → ( ¬ def X x )) ∨ choiced X lemma-ord : ( ox : Ordinal ) → ψ ox lemma-ord ox = TransFinite {ψ} induction ox where ∋-p : (A x : OD ) → Dec ( A ∋ x ) ∋-p A x with p∨¬p (Lift (suc n) ( A ∋ x )) -- LEM ∋-p A x | case1 (lift t) = yes t ∋-p A x | case2 t = no (λ x → t (lift x )) ∀-imply-or : {A : Ordinal → Set n } {B : Set (suc n) } → ((x : Ordinal ) → A x ∨ B) → ((x : Ordinal ) → A x) ∨ B ∀-imply-or {A} {B} ∀AB with p∨¬p (Lift ( suc n ) ((x : Ordinal ) → A x)) -- LEM ∀-imply-or {A} {B} ∀AB | case1 (lift t) = case1 t ∀-imply-or {A} {B} ∀AB | case2 x = case2 (lemma (λ not → x (lift not ))) where lemma : ¬ ((x : Ordinal ) → A x) → B lemma not with p∨¬p B lemma not | case1 b = b lemma not | case2 ¬b = ⊥-elim (not (λ x → dont-orb (∀AB x) ¬b )) induction : (x : Ordinal) → ((y : Ordinal) → y o< x → ψ y) → ψ x induction x prev with ∋-p X ( ord→od x) ... | yes p = case2 ( record { a-choice = ord→od x ; is-in = p } ) ... | no ¬p = lemma where lemma1 : (y : Ordinal) → (y o< x → def X y → ⊥) ∨ choiced X lemma1 y with ∋-p X (ord→od y) lemma1 y | yes y<X = case2 ( record { a-choice = ord→od y ; is-in = y<X } ) lemma1 y | no ¬y<X = case1 ( λ lt y<X → ¬y<X (subst (λ k → def X k ) (sym diso) y<X ) ) lemma : ((y : Ordinals.ord O) → (O Ordinals.o< y) x → def X y → ⊥) ∨ choiced X lemma = ∀-imply-or lemma1 have_to_find : choiced X have_to_find = dont-or (lemma-ord (od→ord X )) ¬¬X∋x where ¬¬X∋x : ¬ ((x : Ordinal) → x o< (od→ord X) → def X x → ⊥) ¬¬X∋x nn = not record { eq→ = λ {x} lt → ⊥-elim (nn x (def→o< lt) lt) ; eq← = λ {x} lt → ⊥-elim ( ¬x<0 lt ) } record Minimal (x : OD) : Set (suc n) where field min : OD x∋min : x ∋ min min-empty : (y : OD ) → ¬ ( min ∋ y) ∧ (x ∋ y) open Minimal open _∧_ -- -- from https://math.stackexchange.com/questions/2973777/is-it-possible-to-prove-regularity-with-transfinite-induction-only -- induction : {x : OD} → ({y : OD} → x ∋ y → (u : OD ) → (u∋x : u ∋ y) → Minimal u ) → (u : OD ) → (u∋x : u ∋ x) → Minimal u induction {x} prev u u∋x with p∨¬p ((y : OD) → ¬ (x ∋ y) ∧ (u ∋ y)) ... | case1 P = record { min = x ; x∋min = u∋x ; min-empty = P } ... | case2 NP = min2 where p : OD p = record { def = λ y1 → def x y1 ∧ def u y1 } np : ¬ (p == od∅) np p∅ = NP (λ y p∋y → ∅< p∋y p∅ ) y1choice : choiced p y1choice = choice-func p np y1 : OD y1 = a-choice y1choice y1prop : (x ∋ y1) ∧ (u ∋ y1) y1prop = is-in y1choice min2 : Minimal u min2 = prev (proj1 y1prop) u (proj2 y1prop) Min2 : (x : OD) → (u : OD ) → (u∋x : u ∋ x) → Minimal u Min2 x u u∋x = (ε-induction {λ y → (u : OD ) → (u∋x : u ∋ y) → Minimal u } induction x u u∋x ) cx : {x : OD} → ¬ (x == od∅ ) → choiced x cx {x} nx = choice-func x nx minimal : (x : OD ) → ¬ (x == od∅ ) → OD minimal x not = min (Min2 (a-choice (cx not) ) x (is-in (cx not))) x∋minimal : (x : OD ) → ( ne : ¬ (x == od∅ ) ) → def x ( od→ord ( minimal x ne ) ) x∋minimal x ne = x∋min (Min2 (a-choice (cx ne) ) x (is-in (cx ne))) minimal-1 : (x : OD ) → ( ne : ¬ (x == od∅ ) ) → (y : OD ) → ¬ ( def (minimal x ne) (od→ord y)) ∧ (def x (od→ord y) ) minimal-1 x ne y = min-empty (Min2 (a-choice (cx ne) ) x (is-in (cx ne))) y