Mercurial > hg > Members > kono > Proof > ZF-in-agda
view src/Topology.agda @ 624:d0938f220648
supf again
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 20 Jun 2022 07:49:35 +0900 |
parents | ce4f3f180b8e |
children | 7ce2cc622c92 |
line wrap: on
line source
open import Level open import Ordinals module Topology {n : Level } (O : Ordinals {n}) where open import zf open import logic open _∧_ open _∨_ open Bool import OD open import Relation.Nullary open import Data.Empty open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality import BAlgbra open BAlgbra O open inOrdinal O open OD O open OD.OD open ODAxiom odAxiom import OrdUtil import ODUtil open Ordinals.Ordinals O open Ordinals.IsOrdinals isOrdinal open Ordinals.IsNext isNext open OrdUtil O open ODUtil O import ODC open ODC O open import filter record Topology ( L : HOD ) : Set (suc n) where field OS : HOD OS⊆PL : OS ⊆ Power L o∪ : { P : HOD } → P ⊆ OS → OS ∋ Union P o∩ : { p q : HOD } → OS ∋ p → OS ∋ q → OS ∋ (p ∩ q) open Topology record _covers_ ( P q : HOD ) : Set (suc n) where field cover : {x : HOD} → q ∋ x → HOD P∋cover : {x : HOD} → {lt : q ∋ x} → P ∋ cover lt isCover : {x : HOD} → {lt : q ∋ x} → cover lt ∋ x -- Base -- The elements of B cover X ; For any U , V ∈ B and any point x ∈ U ∩ V there is a W ∈ B such that -- W ⊆ U ∩ V and x ∈ W . data genTop (P : HOD) : HOD → Set (suc n) where gi : {x : HOD} → P ∋ x → genTop P x g∩ : {x y : HOD} → genTop P x → genTop P y → genTop P (x ∩ y) g∪ : {Q x : HOD} → Q ⊆ P → genTop P (Union Q) -- Limit point record LP ( L S x : HOD ) (top : Topology L) (S⊆PL : S ⊆ Power L ) ( S∋x : S ∋ x ) : Set (suc n) where field neip : {y : HOD} → OS top ∋ y → y ∋ x → HOD isNeip : {y : HOD} → (o∋y : OS top ∋ y ) → (y∋x : y ∋ x ) → ¬ ( x ≡ neip o∋y y∋x) ∧ ( y ∋ neip o∋y y∋x ) -- Finite Intersection Property data Finite-∩ (S : HOD) : HOD → Set (suc n) where fin-∩e : {x : HOD} → S ∋ x → Finite-∩ S x fin-∩ : {x y : HOD} → Finite-∩ S x → Finite-∩ S y → Finite-∩ S (x ∩ y) record FIP ( L P : HOD ) : Set (suc n) where field fipS⊆PL : P ⊆ Power L fip≠φ : { x : HOD } → Finite-∩ P x → ¬ ( x ≡ od∅ ) -- Compact data Finite-∪ (S : HOD) : HOD → Set (suc n) where fin-∪e : {x : HOD} → S ∋ x → Finite-∪ S x fin-∪ : {x y : HOD} → Finite-∪ S x → Finite-∪ S y → Finite-∪ S (x ∪ y) record Compact ( L P : HOD ) : Set (suc n) where field finCover : {X y : HOD} → X covers P → P ∋ y → HOD isFinCover : {X y : HOD} → (xp : X covers P ) → (P∋y : P ∋ y ) → finCover xp P∋y ∋ y isFininiteCover : {X y : HOD} → (xp : X covers P ) → (P∋y : P ∋ y ) → Finite-∪ X (finCover xp P∋y ) -- FIP is Compact FIP→Compact : {L P : HOD} → Topology L → FIP L P → Compact L P FIP→Compact = {!!} Compact→FIP : {L P : HOD} → Topology L → Compact L P → FIP L P Compact→FIP = {!!} -- Product Topology _Top⊗_ : {P Q : HOD} → Topology P → Topology Q → Topology {!!} _Top⊗_ = {!!} -- existence of Ultra Filter -- Ultra Filter has limit point -- FIP is UFL -- Product of UFL has limit point (Tychonoff)