Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 250:08428a661677
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 28 Aug 2019 23:52:54 +0900 |
parents | 2ecda48298e3 |
children | 9e0125b06e76 |
files | cardinal.agda |
diffstat | 1 files changed, 30 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/cardinal.agda Wed Aug 28 20:32:35 2019 +0900 +++ b/cardinal.agda Wed Aug 28 23:52:54 2019 +0900 @@ -88,6 +88,7 @@ ... | refl with lemma4 eq -- with (x,y)≡(x,y') ... | eq1 = lemma4 (ord→== (cong (λ k → od→ord k ) eq1 )) + data ord-pair : (p : Ordinal) → Set n where pair : (x y : Ordinal ) → ord-pair ( od→ord ( < ord→od x , ord→od y > ) ) @@ -118,20 +119,35 @@ ∎ ) -p-iso-1 : { x y : OD } → (p : ZFProduct ∋ < x , y > ) → π1 p ≡ od→ord x -p-iso-1 {x} {y} p = lemma1 {od→ord < x , y >} {od→ord x} {od→ord y} p (cong₂ (λ j k → ord-pair (od→ord < j , k >)) (sym oiso) (sym oiso) ) where - lemma1 : {op ox oy : Ordinal } → ( p : ord-pair op ) → ord-pair op ≡ ord-pair (od→ord ( < ord→od ox , ord→od oy > )) → pi1 p ≡ ox - lemma1 (pair ox oy) eq = {!!} - lemma2 : {op ox oy : Ordinal } → ord-pair op ≡ ord-pair (od→ord ( < ord→od ox , ord→od oy > )) - lemma2 = {!!} - lemma0 : {op ox oy : Ordinal } → ( p : ord-pair (od→ord ( < ord→od ox , ord→od oy > ))) → pi1 p ≡ ox - lemma0 = {!!} - lemma3 : {ox oy : Ordinal } ( p : ord-pair (od→ord ( < ord→od ox , ord→od oy > )) ) → pi1 p ≡ ox - lemma3 {ox} {oy} p = {!!} - lemma4 : {ox oy : Ordinal } → ord-pair (od→ord < ord→od ox , ord→od oy > ) ≡ ZFProduct ∋ < ord→od ox , ord→od oy > - lemma4 = refl - lemma : {p : OD } → ord-pair (od→ord p) ≡ ZFProduct ∋ p - lemma = refl +lemma44 : {ox oy : Ordinal } → ord-pair (od→ord < ord→od ox , ord→od oy >) +lemma44 {ox} {oy} = pair ox oy + +lemma55 : {ox oy : Ordinal } → ZFProduct ∋ < ord→od ox , ord→od oy > +lemma55 {ox} {oy} = pair ox oy + +lemma66 : {ox oy : Ordinal } → pair ( pi1 ( pair ox oy )) ( pi2 ( pair ox oy )) ≡ pair ox oy +lemma66 = refl + +lemma77 : {ox oy : Ordinal } → ZFProduct ∋ < ord→od (pi1 ( pair ox oy )) , ord→od (pi2 ( pair ox oy )) > ≡ ZFProduct ∋ < ord→od ox , ord→od oy > +lemma77 = refl + +p-iso3 : { ox oy : Ordinal } → (p : ZFProduct ∋ < ord→od ox , ord→od oy > ) → p ≡ pair ox oy +p-iso3 p = {!!} where + lemma0 : {ox oy : Ordinal } → ord-pair (od→ord < ord→od ox , ord→od oy >) ≡ ZFProduct ∋ < ord→od ox , ord→od oy > + lemma0 = refl + lemma1 : {op ox oy : Ordinal } → op ≡ od→ord < ord→od ox , ord→od oy > → ord-pair op ≡ ZFProduct ∋ < ord→od ox , ord→od oy > + lemma1 refl = refl + lemma : {op ox oy : Ordinal } → (p : ord-pair op ) → od→ord < ord→od ox , ord→od oy > ≡ op → p ≅ pair ox oy + lemma {op} {ox} {oy} (pair ox' oy') eq = {!!} + + +p-iso2 : { ox oy : Ordinal } → p-cons (ord→od ox) (ord→od oy) ≡ pair ox oy +p-iso2 = subst₂ ( λ j k → j ≡ k ) {!!} {!!} refl + +p-iso1 : { x y : OD } → (p : ZFProduct ∋ < x , y > ) → < ord→od (π1 p) , ord→od (π2 p) > ≡ < x , y > +p-iso1 {x} {y} p with p-cons (ord→od (π1 p)) (ord→od (π2 p)) +... | t = {!!} + p-iso : { x : OD } → (p : ZFProduct ∋ x ) → < ord→od (π1 p) , ord→od (π2 p) > ≡ x p-iso {x} p = {!!}