Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 251:9e0125b06e76
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 29 Aug 2019 01:04:52 +0900 |
parents | 08428a661677 |
children | 8a58e2cd1f55 |
files | cardinal.agda |
diffstat | 1 files changed, 20 insertions(+), 15 deletions(-) [+] |
line wrap: on
line diff
--- a/cardinal.agda Wed Aug 28 23:52:54 2019 +0900 +++ b/cardinal.agda Thu Aug 29 01:04:52 2019 +0900 @@ -50,6 +50,9 @@ ord≡→≡ : { x y : OD } → od→ord x ≡ od→ord y → x ≡ y ord≡→≡ eq = subst₂ (λ j k → j ≡ k ) oiso oiso ( cong ( λ k → ord→od k ) eq ) +od≡→≡ : { x y : Ordinal } → ord→od x ≡ ord→od y → x ≡ y +od≡→≡ eq = subst₂ (λ j k → j ≡ k ) diso diso ( cong ( λ k → od→ord k ) eq ) + eq-prod : { x x' y y' : OD } → x ≡ x' → y ≡ y' → < x , y > ≡ < x' , y' > eq-prod refl refl = refl @@ -131,27 +134,29 @@ lemma77 : {ox oy : Ordinal } → ZFProduct ∋ < ord→od (pi1 ( pair ox oy )) , ord→od (pi2 ( pair ox oy )) > ≡ ZFProduct ∋ < ord→od ox , ord→od oy > lemma77 = refl + +p-iso : { x : OD } → (p : ZFProduct ∋ x ) → < ord→od (π1 p) , ord→od (π2 p) > ≡ x +p-iso {x} p = {!!} where + +pair-iso : {op ox oy : Ordinal} (x : ord-pair (od→ord < ord→od ox , ord→od oy >) ) → pi1 x ≡ ox → pi2 x ≡ oy → x ≡ pair ox oy +pair-iso (pair ox oy) = {!!} + p-iso3 : { ox oy : Ordinal } → (p : ZFProduct ∋ < ord→od ox , ord→od oy > ) → p ≡ pair ox oy -p-iso3 p = {!!} where - lemma0 : {ox oy : Ordinal } → ord-pair (od→ord < ord→od ox , ord→od oy >) ≡ ZFProduct ∋ < ord→od ox , ord→od oy > - lemma0 = refl - lemma1 : {op ox oy : Ordinal } → op ≡ od→ord < ord→od ox , ord→od oy > → ord-pair op ≡ ZFProduct ∋ < ord→od ox , ord→od oy > - lemma1 refl = refl - lemma : {op ox oy : Ordinal } → (p : ord-pair op ) → od→ord < ord→od ox , ord→od oy > ≡ op → p ≅ pair ox oy - lemma {op} {ox} {oy} (pair ox' oy') eq = {!!} - +p-iso3 {ox} {oy} p with p-iso p +... | eq with prod-eq ( ord→== (cong (λ k → od→ord k) eq ) ) +... | record { proj1 = eq1 ; proj2 = eq2 } = lemma eq1 eq2 where + lemma : ord→od (pi1 p) ≡ ord→od ox → ord→od (pi2 p) ≡ ord→od oy → p ≡ pair ox oy + lemma eq1 eq2 with od≡→≡ eq1 | od≡→≡ eq2 + ... | eq1' | eq2' = pair-iso {od→ord < ord→od ox , ord→od oy >} {ox} {oy} p eq1' eq2' p-iso2 : { ox oy : Ordinal } → p-cons (ord→od ox) (ord→od oy) ≡ pair ox oy -p-iso2 = subst₂ ( λ j k → j ≡ k ) {!!} {!!} refl +p-iso2 {ox} {oy} = p-iso3 (p-cons (ord→od ox) (ord→od oy)) -p-iso1 : { x y : OD } → (p : ZFProduct ∋ < x , y > ) → < ord→od (π1 p) , ord→od (π2 p) > ≡ < x , y > +p-iso1 : { ox oy : Ordinal } → (p : ZFProduct ∋ < ord→od ox , ord→od oy > ) → < ord→od (π1 p) , ord→od (π2 p) > ≡ < ord→od ox , ord→od oy > p-iso1 {x} {y} p with p-cons (ord→od (π1 p)) (ord→od (π2 p)) -... | t = {!!} +... | t with p-iso3 p | p-iso3 t +... | refl | refl = refl - -p-iso : { x : OD } → (p : ZFProduct ∋ x ) → < ord→od (π1 p) , ord→od (π2 p) > ≡ x -p-iso {x} p = {!!} - ∋-p : (A x : OD ) → Dec ( A ∋ x ) ∋-p A x with p∨¬p ( A ∋ x ) ∋-p A x | case1 t = yes t