Mercurial > hg > Members > kono > Proof > ZF-in-agda
changeset 86:08be6351927e
internal error
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 05 Jun 2019 03:21:47 +0900 |
parents | 7494ae6b83c6 |
children | 296388c03358 |
files | ordinal.agda |
diffstat | 1 files changed, 36 insertions(+), 22 deletions(-) [+] |
line wrap: on
line diff
--- a/ordinal.agda Wed Jun 05 02:58:17 2019 +0900 +++ b/ordinal.agda Wed Jun 05 03:21:47 2019 +0900 @@ -211,21 +211,6 @@ omax {n} x y | tri≈ ¬a refl ¬c | tri≈ ¬a₁ b ¬c₁ = osuc x omax {n} x y | tri≈ ¬a refl ¬c | tri> ¬a₁ ¬b c = osuc x -omax-induction : {n : Level} ( x y : Ordinal {suc n} ) → { ψ : ( m : Ordinal {suc n} ) → m ≡ omax x y → Set (suc n) } - → ( lv x < lv y → ( m : Ordinal {suc n} ) → (eq : m ≡ omax x y ) → ψ m eq ) - → ( lv y < lv x → ( m : Ordinal {suc n} ) → (eq : m ≡ omax x y ) → ψ m eq ) - → ( lv y ≡ lv x → ord x ≅ ord y → ( m : Ordinal {suc n} ) → (eq : m ≡ omax x y ) → ψ m eq ) - → ( lv y ≡ lv x → ord x d< ord y → ( m : Ordinal {suc n} ) → (eq : m ≡ omax x y ) → ψ m eq ) - → ( lv y ≡ lv x → ord y d< ord x → ( m : Ordinal {suc n} ) → (eq : m ≡ omax x y ) → ψ m eq ) - → ψ ( omax x y ) refl -omax-induction {n} x y c1 c2 c3 c4 c5 with <-cmp (lv x) (lv y) -omax-induction {n} x y c1 c2 c3 c4 c5 | tri< a ¬b ¬c = c1 a (osuc y) refl -omax-induction {n} x y c1 c2 c3 c4 c5 | tri> ¬a ¬b c = c2 c (osuc x) refl -omax-induction {n} x y c1 c2 c3 c4 c5 | tri≈ ¬a refl ¬c with triOrdd (ord x) (ord y) -omax-induction {n} x y c1 c2 c3 c4 c5 | tri≈ ¬a refl ¬c | tri< a ¬b ¬c₁ = c4 refl a (osuc y) refl -omax-induction {n} x y c1 c2 c3 c4 c5 | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = c3 refl refl (osuc x) refl -omax-induction {n} x y c1 c2 c3 c4 c5 | tri≈ ¬a refl ¬c | tri> ¬a₁ ¬b c = c5 refl c (osuc x) refl - omax< : {n : Level} ( x y : Ordinal {suc n} ) → x o< y → osuc y ≡ omax x y omax< {n} x y lt with <-cmp (lv x) (lv y) omax< {n} x y lt | tri< a ¬b ¬c = refl @@ -237,13 +222,42 @@ omax< {n} x y (case2 lt) | tri≈ ¬a refl ¬c | tri≈ ¬a₁ b ¬c₁ = ⊥-elim ( trio<≡ b lt ) omax< {n} x y (case2 lt) | tri≈ ¬a refl ¬c | tri> ¬a₁ ¬b c = ⊥-elim ( o<> (case2 lt) (case2 c) ) -omaxx : {n : Level} ( x y : Ordinal {suc n} ) → x o< omax x y -omaxx {n} x y = omax-induction {n} x y {λ om refl → x o< om } - ( λ lx<ly omax refl → ordtrans (case1 lx<ly) <-osuc ) - ( λ lx>ly omax → {!!} ) -- ordtrans (case1 lx>ly) <-osuc ) - ( λ refl refl omax refl → {!!} ) -- <-osuc ) - ( λ refl ox<oy omax → {!!} ) -- ordtrans (case2 ox<oy) <-osuc ) - ( λ refl ox>oy omax → {!!} ) -- ordtrans (case2 ox>oy) <-osuc ) +omax-x : {n : Level} ( x y : Ordinal {suc n} ) → x o< omax x y +omax-x {n} x y with <-cmp (lv x) (lv y) +omax-x {n} x y | tri< a ¬b ¬c = ordtrans (case1 a) <-osuc +omax-x {n} x y | tri> ¬a ¬b c = <-osuc +omax-x {n} x y | tri≈ ¬a refl ¬c with triOrdd (ord x) (ord y) +omax-x {n} x y | tri≈ ¬a refl ¬c | tri< a ¬b ¬c₁ = ordtrans (case2 a) <-osuc +omax-x {n} x y | tri≈ ¬a refl ¬c | tri≈ ¬a₁ b ¬c₁ = <-osuc +omax-x {n} x y | tri≈ ¬a refl ¬c | tri> ¬a₁ ¬b c = <-osuc + +omax-y : {n : Level} ( x y : Ordinal {suc n} ) → y o< omax x y +omax-y {n} x y with <-cmp (lv x) (lv y) +omax-y {n} x y | tri< a ¬b ¬c = <-osuc +omax-y {n} x y | tri> ¬a ¬b c = ordtrans (case1 c) <-osuc +omax-y {n} x y | tri≈ ¬a refl ¬c with triOrdd (ord x) (ord y) +omax-y {n} x y | tri≈ ¬a refl ¬c | tri< a ¬b ¬c₁ = <-osuc +omax-y {n} x y | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = <-osuc +omax-y {n} x y | tri≈ ¬a refl ¬c | tri> ¬a₁ ¬b c = ordtrans (case2 c) <-osuc + +omxx : {n : Level} ( x : Ordinal {suc n} ) → omax x x ≡ osuc x +omxx {n} x with <-cmp (lv x) (lv x) +omxx {n} x | tri< a ¬b ¬c = refl +omxx {n} x | tri> ¬a ¬b c = refl +omxx {n} x | tri≈ ¬a refl ¬c with triOrdd (ord x) (ord x) +omxx {n} x | tri≈ ¬a refl ¬c | tri< a ¬b ¬c₁ = refl +omxx {n} x | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = refl +omxx {n} x | tri≈ ¬a refl ¬c | tri> ¬a₁ ¬b c = refl + +omxxx : {n : Level} ( x : Ordinal {suc n} ) → omax x (omax x x ) ≡ osuc (osuc x) +omxxx {n} x with <-cmp (lv x) (lv x) +omxxx {n} x | tri< a ¬b ¬c = refl +omxxx {n} x | tri> ¬a ¬b c = refl +omxxx {n} x | tri≈ ¬a refl ¬c with triOrdd (ord x) (ord x) +omxxx {n} x | tri≈ ¬a refl ¬c | tri< a ¬b ¬c₁ = refl +omxxx {n} x | tri≈ ¬a refl ¬c | tri≈ ¬a₁ refl ¬c₁ = refl +omxxx {n} x | tri≈ ¬a refl ¬c | tri> ¬a₁ ¬b c = refl + OrdTrans : {n : Level} → Transitive {suc n} _o≤_ OrdTrans (case1 refl) (case1 refl) = case1 refl